

Functions library for .Net Framework 2.0/3.0 or higher

SwanCSharp v4.5

FreeWare License

http://www.swancsharp.com

http://www.facebook.com/swancsharp

https://twitter.com/SwanCSharp (@swancsharp)

v4.5 (January 2014)

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 1

REVISION CONTROL

VERSION DATE COMMENTS

4.5 Rev1 02/01/2014 Initial documentation

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 2

DOCUMENT INDEX

1. ACKNOWLEDGEMENTS __________________________________ 8

2. SwanCSharp in Internet _________________________________ 8

2.1 Oficial Web __ 8

2.2 Facebook __ 8

2.3 Twitter __ 9

3. END USER FREEWARE LICENSE AGREEMENT ____________ 9

3.1 DEFINITIONS __ 9

3.2 GENERAL PURPOSE ___ 10

3.3 INTELLECTUAL PROPERTY RIGHTS ________________________________ 10

3.4 WARRANTY ___ 11

3.5 LIMITATION OF RESPONSIBILITIES ______________________________ 12

3.6 NO-RESCISSION CLAUSES __ 12

4. INTRODUCTION _______________________________________ 12

5. REQUIREMENTS _______________________________________ 12

6. Solariem (Graphics wizard for SwanCSharp) ____________ 12

7. DOWNLOAD AND INSTALLATION _______________________ 13

8. NEW FEATURES IN 4.5 VERSION _______________________ 13

8.1 CheckInternetConnection ___ 13

8.2 CheckTCPPortIsOpen ___ 13

8.3 ClipboardAgent ___ 14

8.4 GetDomainNameFromIP __ 14

8.5 GetFileFromHttp __ 14

8.6 GetIPFromDomainName __ 14

8.7 GetIPNetworkData __ 14

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 3

8.8 GetListOfCountries __ 14

8.9 GetWebProxyActive ___ 14

8.10 GlobalHotKeys __ 15

8.11 IsLocalIP ___ 15

8.12 IsValidIP ___ 15

8.13 MySQL __ 15

8.14 Network __ 15

8.15 ShowNotifyButton __ 15

8.16 WindowRemoveUser __ 15

9. LIBRARY STRUCTURE __________________________________ 15

9.1 SwanCSharp namespace __ 16

9.2 SwanCSharp_Controls namespace ________________________________ 17

10. FUNCTIONS USER REFERENCE (SwanCSharp) __________ 18

10.1 SwanCSharp.Arrays ___ 18

10.1.1 AddByteToArray __ 19

10.1.2 AddElementsByteArray __ 19

10.1.3 AddElementsIntegerArray __ 20

10.1.4 AddElementsObjectArray __ 20

10.1.5 AddElementsStringArray ___ 21

10.1.6 AddIntegerToArray ___ 22

10.1.7 AddObjectToArray __ 22

10.1.8 AddStringToArray ___ 23

10.1.9 ArrayResize __ 23

10.1.10 FindItemInByteArray __ 24

10.1.11 FindItemInIntegerArray __ 24

10.1.12 FindItemInObjectArray __ 24

10.1.13 FindItemInStringArray ___ 25

10.1.14 RemoveItemsFromByteArray ___ 25

10.1.15 RemoveItemsFromIntegerArray ___ 25

10.1.16 RemoveItemsFromObjectArray ___ 26

10.1.17 RemoveItemsFromStringArray __ 26

10.2 SwanCSharp.Configurator ___ 27

10.2.1 Configurator ___ 27

10.3 SwanCSharp.CRC32 ___ 32

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 4

10.4 SwanCSharp.DataAccess __ 32

10.4.1 DataConnectionSQLServer, DataConnectionOracle, DataConnectionFirebird,

DataConnectionMySQL, and DataConnectionAccess ________________________ 32

10.4.2 DatabaseStructureSQLServer, DatabaseStructureOracle, DataBaseStructureFirebird,

DataBaseStructureMySQL, and DatabaseStructureAccess ___________________ 38

10.4.3 DataExport __ 41

10.4.4 Utilities __ 41

10.5 SwanCSharp.Directories __ 44

10.5.1 CopyDirectory __ 45

10.5.2 GetFolderNamesRecursively __ 45

10.6 SwanCSharp.Encryption ___ 45

10.6.1 BytesEncryptToFile __ 46

10.6.2 FileDecrypt __ 46

10.6.3 FileDecryptToBytes ___ 47

10.6.4 FileEncrypt ___ 47

10.6.5 StringDecrypt __ 48

10.6.6 StringEncrypt __ 48

10.7 SwanCSharp.Files ___ 49

10.7.1 CheckPathEndsBackslash __ 49

10.7.2 CheckPathEndsSlash __ 49

10.7.3 FileMove ___ 50

10.7.4 FileToArrayBytes __ 50

10.7.5 GZIPUncompressFile __ 50

10.7.6 RemoveInvalidCharsFileName __ 51

10.7.7 SaveArrayBytesToFile ___ 51

10.7.8 SeparateFileNameAndPath ___ 51

10.7.9 UnZip ___ 52

10.7.10 Zip __ 52

10.8 SwanCSharp.Imaging ___ 53

10.8.1 BitmapResize ___ 53

10.8.2 BitmapToMemoryStream ___ 53

10.8.3 BitmapToUnsafeBytes ___ 53

10.8.4 ByteArrayToBitmap ___ 54

10.8.5 ByteArrayToIcon __ 54

10.8.6 ByteArrayToImage __ 54

10.8.7 CompareImages __ 55

10.8.8 ConvertBase64ToByteArray __ 55

10.8.9 ConvertBase64ToFile __ 55

10.8.10 ConvertFileToBase64 __ 56

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 5

10.8.11 ConvertBytesToBase64 __ 56

10.8.12 ConvertImageBytesToBase64HTML ______________________________________ 56

10.8.13 ConvertImageFileToBase64HTML _______________________________________ 57

10.8.14 ConvertTo8BppGrayscale __ 57

10.8.15 DominantColor ___ 57

10.8.16 GetDifferenceFromImages ___ 58

10.8.17 IconToByteArray __ 58

10.9 SwanCSharp.Internet ___ 58

10.9.1 BreakdownFTPString __ 58

10.9.2 CheckInternetConnection __ 59

10.9.3 FTPClient __ 59

10.9.4 GetDomainNameFromIP ___ 60

10.9.5 GetFileFromHttp __ 60

10.9.6 GetIPFromDomainName ___ 60

10.9.7 GetWebProxyActive ___ 61

10.9.8 IPToUint32 __ 61

10.9.9 Uint32ToIP __ 61

10.10 SwanCSharp.Logger __ 62

10.10.1 Logger __ 62

10.11 SwanCSharp.Miscellaneous _______________________________________ 63

10.11.1 CalculationDiskSpace __ 63

10.11.2 ComputerCloseSession ___ 63

10.11.3 Delay__ 63

10.11.4 ExistsLibrary ___ 64

10.11.5 FormCentering ___ 64

10.11.6 GetExecutionPath ___ 64

10.11.7 GetListOfCountries __ 64

10.11.8 LoadDataInComboBox ___ 65

10.11.9 ObjectCentering __ 66

10.11.10 RestartComputer __ 66

10.11.11 ShowErrorMessage __ 66

10.11.12 ShowInformationMessage __ 67

10.11.13 ShowOKCancelQuestion ___ 67

10.11.14 ShowWarningMessage ___ 67

10.11.15 ShowYesNoQuestion __ 68

10.11.16 ShutDownComputer ___ 68

10.11.17 TextSlicingInLines ___ 68

10.12 SwanCSharp.Network ___ 69

10.12.1 ChecklTCPPortIsOpen ___ 69

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 6

10.12.2 GetIPNetworkData __ 69

10.12.3 IsLocalIP __ 70

10.12.4 IsValidIP ___ 70

10.13 SwanCSharp.Reporting __ 70

10.13.1 ReportHTMLViewer __ 75

10.14 SwanCSharp.SNTP __ 76

10.15 SwanCSharp.Socket ___ 76

10.15.1 FileClient __ 77

10.15.2 FileServer __ 78

10.15.3 SocketClient __ 80

10.15.4 SocketServer ___ 81

10.16 SwanCSharp.Users __ 82

10.16.1 UserManagementSQLServer, UserManagementOracle, UserManagementFirebird,

UserManagementMySQL y UserManagementAccess ________________________ 83

10.17 SwanCSharp.Validations ___ 89

10.17.1 FileNameWithPathValidate ___ 89

10.17.2 HexadecimalInString __ 90

10.17.3 HigherNumber __ 90

10.17.4 IsNumeric__ 90

10.17.5 IsValidDate __ 91

10.17.6 IsValidEmail __ 91

10.17.7 LowerNumber __ 91

10.18 SwanCSharp.Video __ 92

11. FUNCTIONS USER REFERENCE (SwanCSharp_Controls) _ 93

11.1 SwanCSharp_Controls.WindowBase _____________________________ 93

11.1.1 New project creation __ 94

11.1.2 Creating a “SwanCSharp” window _______________________________________ 95

11.1.3 Images and icons in Windows “SwanCSharp” ____________________________ 101

11.1.4 Property “MainGrid” __ 102

11.1.5 Initial properties of “SwanCSharp” window ______________________________ 103

11.1.6 Controls and objects for windows “SwanCSharp” _________________________ 106

11.2 SwanCSharp_Controls.WindowError ___________________________ 131

11.3 SwanCSharp_Controls.WindowInformation ____________________ 131

11.4 SwanCSharp_Controls.WindowOKCancelQuestion _____________ 132

11.5 SwanCSharp_Controls.WindowWarning _______________________ 132

11.6 SwanCSharp_Controls.WindowYesNoQuestion _________________ 133

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 7

11.7 WindowFile ___ 134

11.8 WindowFolder ___ 134

11.9 WindowNewFile ___ 135

11.10 WindowAddUser ___ 136

11.11 WindowLoginUser ___ 137

11.12 WindowPasswordUser ___ 138

11.13 WindowRemoveUser __ 139

11.14 WindowDataQuery __ 140

11.15 WindowParameters ___ 141

11.16 WindowReportView ___ 142

11.17 WindowSplash __ 143

11.18 SwanCSharp_Controls.ClipboardAgent _________________________ 144

11.19 SwanCSharp_Controls.GlobalHotKeys _________________________ 146

11.20 SwanCSharp_Controls.SW_Miscellaneous _____________________ 146

11.20.1 LoadDataInComboBox __ 147

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 8

1. ACKNOWLEDGEMENTS

Thanks to Pedro Pablo Fernández (http://www.pedropablofernandez.com), for designing the
SwanCSharp logo.

2. SwanCSharp in Internet

The "SwanCSharp" project exists in Internet on the official website and on social networks
such as Facebook and Twitter. Here are the addresses of Internet access and QR codes for
easy connection through mobile.

2.1 Oficial Web

In the official Web SwanCSharp can download any version of the project and you can
download the documentation in Spanish or English. There is also a form to communicate via
email with project managers.

Web Address: http://www.swancsharp.com

QR Code:

2.2 Facebook

In the social network Facebook there is an official page dedicated to the project SwanCSharp
which aims to create a community of users of this project.

Web Address: http://www.facebook.com/swancsharp

QR Code:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 9

2.3 Twitter

In the social network Twitter there an official page dedicated to SwanCSharp project which
aims to create a community of users of this project.

Web Address: https://twitter.com/swancsharp

Account: @swancsharp

QR Code:

3. END USER FREEWARE LICENSE AGREEMENT

USER WARNING: Please read carefully. Using all or a portion of the Software is accepting
all the terms and conditions of this Agreement. If you do not agree, do not use this Software.

3.1 DEFINITIONS

Under this Agreement, the following terms shall have the respective meanings indicated;
such meanings apply to both singular and plural forms of the terms defined:

"Licensor" means http://www.swancsharp.com and Manuel Llaca as product developer.

"Licensee" means You or Your Company, unless otherwise indicated.

"Software" means (a) all the contents of the files, disk (s), CD-ROM (s) or any other means
which this Agreement is provided, including but not limited to ((i) registration information, (ii)
related explanatory materials or files ("Documentation"), and (iii) configuration files, execution
and code examples of Software (if any)), and (b) upgrades, modified versions, additions, and

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 10

copies of the Software, any, licensed to you by http://www.swancsharp.com (collectively,
"Updates").

"Using" "Use" or "Using" means to access, install, download, copy or other benefits obtained
from using the functionality of the Software in accordance with the Documentation.

"System" means XO, Windows OS, GNU / Linux or Mac OSX, or any other virtual machine.

3.2 GENERAL PURPOSE

It grants you a license to use the Software nonexclusive downloaded for any purpose for
unlimited period. The software product under this License is provided free. While monetary
transaction is not effected by the license to use this software that does not mean that there
are no conditions for using such software:

- The Software may be installed and used by the Licensee for any legal purpose.

- The Software may be installed and used by the Licensee on any number of systems.

- The Software may be copied and distributed under the condition that the copyright and
warranty are intact, and the dealer does not charge money or fees for the Software product,
except cover distribution costs.

- Licensee may reference the Software to its commercial projects, and can earn money on its
commercial software without paying royalty to Licensor for reference the Software.

- Licensee shall have no right or ownership in the Software. Licensee acknowledges and
agrees that the Licensor retains all copyrights and all other rights, including the right to
property, and to the Software.

- Use in the scope of this License is royalty free and no license or registration shall be paid
by the Licensee.

3.3 INTELLECTUAL PROPERTY RIGHTS

- This License does not transmit any intellectual rights on the Software. The Software and
any copies that Licensee is authorized by Licensor to make are the intellectual property of
Licensor and its suppliers, and belong.

- The Software is protected by copyright, including without limitation copyright laws and
international treaty provisions.

- Any copies that the Licensee is permitted to make pursuant to this Agreement must contain
the same copyright and other proprietary notices that appear on or in the Software.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 11

- The structure, organization and code of the Software are trade secrets and confidential
information of Licensor and its suppliers. Licensee agrees not to decompile, disassemble or
otherwise discover any source code of the Software.

- Any attempt to reverse engineer, copy, clone, modify or alter in any way the installer
program without the Licensor specific approval are strictly prohibited. The Licensee is not
authorized to use any plug-in or attached to allow saving changes to a file with software
licensed and distributed by the Licensor.

- Any information provided by Licensor or obtained by Licensee, as then permits may only be
used by the Licensee for the purpose described herein and may not be disclosed to any third
party or used to create any software which is substantially similar to that expressed by
Software.

- The marking must be used in accordance with accepted trademark practice, including
identification of the trademark owners. Trademarks may only be used to identify any printed
output of the Software and such use of trademarks does not grant Licensee any ownership of
and for them.

3.4 WARRANTY

Licensor warrants:

- Http://www.swancsharp.com has ownership in the Software and its documentation and /
or is in possession of valid rights and licenses that support the terms of this Agreement.

- To the best knowledge and belief of the Licensee, the Software will not infringe or violate
any intellectual property right of any third party.

- The Software does not contain any back door, time bomb, make suicide device or other
routine intentionally designed by the Licensor to disable a computer program, or instructions
that alter, destroy or inhibit the processing environment.

- Except those warranties specified in section 1.4 above, the Software is being delivered
"HOW IS" and the Licensor makes no warranty as to its use or performance.

- The Licensor and its suppliers do not and can not warrant the performance or results the
Licensee may obtain by using the Software. The risk arising out of use or performance of the
Software is assumed by the Licensee.

- Licensor makes no warranties, express or implied, that (i) the Software will be of
satisfactory quality, fit for any particular purpose or for any particular use within specific
conditions, notwithstanding that such purpose, use or condition can be known by Licensor, or
(ii) that the Software will operate error free or without interruption or that any errors will be
corrected.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 12

3.5 LIMITATION OF RESPONSIBILITIES

In no event shall Licensor or its suppliers be liable for any damages, claims or whatever cost
or any consequential, indirect or incidental damages, or any loss, even if the Licensor has
been advised of the possibility of such loss, damage, claim or cost made by any third party.

In no event shall Licensee be liable to the Licensor on condition that the Licensee complies
with all terms and conditions of this License.

3.6 NO-RESCISSION CLAUSES

If any portion of this agreement is deemed unenforceable, the remainder will remain valid.
This means that if a section of the Agreement is not permitted by law, the rest of the
Agreement remains in effect. The non-exercise of any right under this Agreement by either
party shall not constitute a waiver of (a) any other term or condition of this Agreement, or (b)
a right at any time thereafter to enforce accurate and strict terms of this Agreement.

4. INTRODUCTION

SwanCSharp Function Library aims to collect lots of functions to implement development
environments based on technology. NET Framework, and these functions have the following
objectives: to develop applications faster; put the hand of the beginning programmers
develop highly complex processes.

The function library is SwanCSharp fast implementation and ease of use, the entire system
only consists of a file called "SwanCSharp.dll".

5. REQUIREMENTS

To develop applications using the functions of "SwanCSharp.dll" requires a programming
environment to compile under the Framework. NET 2.0 or higher. Applications can be
developed in C # and Visual Basic. Net development environments using Microsoft's IDE
(Visual Studio or Free Express versions) or use other IDEs like Netbeans, SharpDevelop or
MonoDevelop for Windows, or MonoDevelop for Linux.

All features included in "SwanCSharp.dll" are usable in any application to develop according
to the requirements defined in the previous paragraph (Windows Forms application,
Windows Service, Web Service, Console Application, Class Library application, etc).

6. Solariem (Graphics wizard for SwanCSharp)

The library "SwanCSharp" has a wizard application called "Solariem" that allows us to
generate the source code and entire base of the solution (.SLN) with data access, user

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 13

management, parameter management, main screen, icons, etc, ready to run in Visual Studio
2005 Extensions Wpf + or higher.

For more information, visit the official website (http://www.solariem.com). With Solariem can
create the basis for an application in C# + SwanCSharp in less than 10 minutes. On the
following link you can see a demo video:

http://www.youtube.com/watch?v=V3dw9cbZShw

7. DOWNLOAD AND INSTALLATION

The library "SwanCSharp" can be downloaded from the official website of the project
(http://www.swancsharp.com), obtaining a ZIP file called "SwanCSharp.zip". Unpack the ZIP
file to the desired location on your hard disk.

Once unzipped the file in the folder "Binaries" finds "SwanCSharp.dll" file to be copied to
the build directory of the Visual Basic or C # in which we want to use the library functions. In
the development environment (IDE) usual work creates a new project, or opens an existing
project, and included "SwanCSharp.dll" in the reference list. From that moment can be used
in this project all library functions.

In the folder "Documentation" you can find the instruction manual in Spanish and English.

In the folder "Samples" you can find many examples of using the features built into the
library. All examples have been developed in the IDE Microsoft Visual C #.

8. NEW FEATURES IN 4.5 VERSION

In this section are commented the "SwanCSharp" new features in this new version
4.5 with regard to the previous 4.0 version.

8.1 CheckInternetConnection

In the "Internet" class we added the "CheckInternetConnection" function that returns whether
or not Internet connection.

8.2 CheckTCPPortIsOpen

In the “Network” we added the “CheckTCPPortIsOpen” function that returns if a concrete port
of a domain name or IP is open.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 14

8.3 ClipboardAgent

In the "SwanCSharp_Controls" namespace we have created a class with a clipboard agent
for use in "WindowBase" windows.

8.4 GetDomainNameFromIP

In the "Internet" class we added the "GetDomainNameFromIP" function that returns the
domain name of given valid IP.

8.5 GetFileFromHttp

In the "Internet" class we added the "GetFileFromHttp" function that allows us to download a
file uploaded to the Internet.

8.6 GetIPFromDomainName

In the "Internet" class we added the "GetIPFromDomainName" function that returns the IP of
a given Internet domain name.

8.7 GetIPNetworkData

In the "Network" class we added the "GetIPNetworkData" function that returns all the
information associated with the system’s Ethernet cards.

8.8 GetListOfCountries

In the "Miscellaneous" class we added the "GetListOfCountries" function that returns a list of
countries (in English or Spanish).

8.9 GetWebProxyActive

In the "Internet" class we added the "GetWebProxyActive" function that allows us to obtain all
the information of the active web proxy in the execution computer.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 15

8.10 GlobalHotKeys

In the "SwanCSharp_Controls" namespace we have created a class, you can set global
hotkeys for use in "WindowBase" windows.

8.11 IsLocalIP

In the "Network" class we added "IsLocalIP" function that checks if a given IP is local or not.

8.12 IsValidIP

In the "Network" class we added the "IsValidIP" function that checks if a given IP address
has the correct structure.

8.13 MySQL

To SwanCSharp we have added support for MySQL manager in managing databases, now
Access, SQL Server, Oracle, Firebird, and MySQL are supported.

8.14 Network

We have created a new class called "Network" that collects functions and methods for
managing computer networks.

8.15 ShowNotifyButton

In the GUI "SwanCSharp_Controls" we have created a new notification button which
accompanies to minimize, maximize, and close buttons.

8.16 WindowRemoveUser

We have repaired an existing error validating current user permissions to delete an account.

9. LIBRARY STRUCTURE

The library "SwanCSharp" consists of a single DLL (SwanCSharp.dll) that containing
several namespaces.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 16

9.1 SwanCSharp namespace

The namespace "SwanCSharp" is divided into groups of classes which are (you can use
this namespace with the. Net Framework 2.0 or higher installed):

SwanCSharp_Controls.ClipboardAgent.- Se crea esta clase para incluir un agente que
“vigila” por el movimiento de contenidos en el portapapeles de Windows.

SwanCSharp.Arrays.- Class that adds features and methods for managing arrays, thus
avoiding the deficiencies of that class in C #.

SwanCSharp.Configurator.- Class that incorporates to our developments complete
management of configuration parameters (including forms).

SwanCSharp.CRC32.- Class that incorporates to our developments CRC32 calculation
functions on strings and files.

SwanCSharp.DataAccess.- Class that allows us to incorporate into our developments
complete management of data access, including management in the creation and
maintenance of the databases.

SwanCSharp.Directories.- Class that contains functions for managing directories and
folders.

SwanCSharp.Encryption.- Class that contains functions for data or files encryption of any
type (AES256 encryption).

SwanCSharp_Controls.WindowFolder.- Class that incorporates the window basic design
of folders selection.

SwanCSharp.Files.- Class that contains functions for file management and maintenance.

SwanCSharp.Imaging.- Class that contains functions for managing and processing images.

SwanCSharp.Internet.- Class that contains functions related to the Internet world (FTP
Client, etc..).

SwanCSharp.Logger.- Class that allows us to incorporate to our management
developments Log Files exception handling.

SwanCSharp.Miscellaneous.- Generic class which includes those functions and broad
general use.

SwanCSharp.Network.- Class that contains functions related to manage computer
networks.

SwanCSharp.Reporting.- Class that adds features and methods for easily and quickly
develop reports in HTML data for later viewing or printing by integrated viewer.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 17

SwanCSharp.SNTP.- Class that adds features and methods to incorporate our
developments SNTP time client.

SwanCSharp.Sockets.- Class that adds features and methods for quickly and easily
develop a Client Socket or Server Socket, or both, allowing create applications to perform to
enable a client / server communication using any connection (LAN, WAN or Internet) and
using TCP port desired.

SwanCSharp.UserManagement- Class that incorporates to our developments complete
management of users and profiles (including forms). There is a specific class for each
database manager (SQLServer, Oracle, Firebird, and Access).

SwanCSharp.Validations.- Class that allows our developments incorporate functions to
validate data.

SwanCSharp.Video.- Class for managing generated video streaming from IP video
cameras.

9.2 SwanCSharp_Controls namespace

The namespace "SwanCSharp_Controls" is divided into groups of classes which are (you
can use this namespace with the. Net Framework 3.0 or higher installed):

SwanCSharp_Controls.ClipboardAgent.- We have created this class to include an agent
that "watches" for the movement of content in the Windows clipboard.

SwanCSharp_Controls.GlobalHotKeys.- We have created this class to include a global
management hotkeys.

SwanCSharp_Controls.SW_Miscellaneous.- We created this generic class which includes
those existing functions in SwanCSharp.Miscellaneous that require customization for
SwanCSharp.WindowBase use.

SwanCSharp_Controls.WindowBase.- Class that incorporates the basic design of all
windows that can be created with this program.

SwanCSharp_Controls.WindowAddUser.- Class that incorporates the basic design of the
user creation window.

SwanCSharp_Controls.WindowDataQuery.- Class that incorporates the basic design of
display data window.

SwanCSharp_Controls.WindowError.- Class that incorporates the basic design of the
message window of error.

SwanCSharp_Controls.WindowFile.- Class that incorporates the basic design of the file
selection window.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 18

SwanCSharp_Controls.WindowFolder.- Class that incorporates the basic design of folders
selection window.

SwanCSharp_Controls.WindowInformation.- Class that incorporates the basic design of
the message window of information.

SwanCSharp_Controls.WindowLoginUser.- Class that incorporates the basic design of
the user access window.

SwanCSharp_Controls.WindowNewFile.- Class that incorporates the basic design of the
new file selection window (dialog box for new files).

SwanCSharp_Controls.WindowOKCancelQuestion.- Class that incorporates the basic
design of the message window of question.

SwanCSharp_Controls.WindowParameters.- Class that incorporates the basic design of
configuration parameters.

SwanCSharp_Controls.WindowPasswordUser.- Class that incorporates the basic design
of the password change of users.

SwanCSharp_Controls.WindowRemoveUser.- Class that incorporates the basic design of
the remove user window.

SwanCSharp_Controls.WindowReportView.- Class that incorporates the basic design of
the report view window.

SwanCSharp_Controls.WindowSplash.- Class that incorporates the basic design of the
welcome window.

SwanCSharp_Controls.WindowWarning.- Class that incorporates the basic design of the
message window of warning.

SwanCSharp_Controls.WindowYesNoQuestion.- Class that incorporates the basic design
of the message window of question.

10. FUNCTIONS USER REFERENCE (SwanCSharp)

The following will describe the reference of use of each of the functions incorporated into the
SwanCSharp namespace of the library. The references are grouped by the classes to which
they belong in alphabetical order.

10.1 SwanCSharp.Arrays

The Arrays class incorporates a number of functions to support the management of different
types of arrays. This class is useful for resizing that objects.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 19

10.1.1 AddByteToArray

The function allows to add one byte to the end or beginning of a given byte array, resizing
the original array. Expects three parameters: the first parameter in the source array in the
second parameter byte to add, and the third parameter a Boolean, true inserts it at the
beginning of the array, false inserts it at the end of the array.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

byte [] lobjArraySource = new byte [3];

byte pobjByte1 = 48; // Byte or ASCII code for '0'
byte pobjByte2 = 49; // Byte or ASCII code for '1'
byte pobjByte3 = 50; // Byte or ASCII code for '2'

lobjArraySource[0] = pobjByte1;
lobjArraySource[1] = pobjByte2;
lobjArraySource[2] = pobjByte3;

lobjArraySource = Arrays .AddByteToArray(lobjArraySource, 52, false);
lobjArraySource = Arrays .AddByteToArray(lobjArraySource, 51, true);

10.1.2 AddElementsByteArray

The function allows you to add an array of bytes source the content of another array of bytes
secondary. Expects three parameters: the first parameter in the source array in the second
parameter the secondary array, and the third parameter a Boolean, true inserts it at the
beginning of the array, false inserts it at the end of the array.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

byte [] lobjArraySource = new byte [3];
byte [] lobjArraySecondary = new byte [3];

byte pobjByte1 = 48; // Byte or ASCII code for '0'
byte pobjByte2 = 49; // Byte or ASCII code for '1'
byte pobjByte3 = 50; // Byte or ASCII code for '2'

byte pobjByte4 = 51; // Byte or ASCII code for '3'
byte pobjByte5 = 52; // Byte or ASCII code for '4'
byte pobjByte6 = 53; // Byte or ASCII code for '5'

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 20

lobjArraySource[0] = pobjByte1;
lobjArraySource[1] = pobjByte2;
lobjArraySource[2] = pobjByte3;

lobjArraySecondary [0] = pobjByte4;
lobjArraySecondary [1] = pobjByte5;
lobjArraySecondary [2] = pobjByte6;

lobjArraySource = Arrays .AddElementsByteArray(lobjArraySource,
lobjArraySecondary, false);

10.1.3 AddElementsIntegerArray

The function allows you to add an array of integer source the content of another array of
integer secondary. Expects three parameters: the first parameter in the source array in the
second parameter the secondary array, and the third parameter a Boolean, true inserts it at
the beginning of the array, false inserts it at the end of the array.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

int [] lobjArraySource = new int [3];
int [] lobjArraySecondary = new int [3];

int pobjByte1 = 48; // Byte or ASCII code for '0'
int pobjByte2 = 49; // Byte or ASCII code for '1'
int pobjByte3 = 50; // Byte or ASCII code for '2'

int pobjByte4 = 51; // Byte or ASCII code for '3'
int pobjByte5 = 52; // Byte or ASCII code for '4'
int pobjByte6 = 53; // Byte or ASCII code for '5'

lobjArraySource[0] = pobjByte1;
lobjArraySource[1] = pobjByte2;
lobjArraySource[2] = pobjByte3;

lobjArraySecondary [0] = pobjByte4;
lobjArraySecondary [1] = pobjByte5;
lobjArraySecondary [2] = pobjByte6;

lobjArraySource = Arrays .AddElementsIntegerArray(lobjArraySource,
lobjArraySecondary, false);

10.1.4 AddElementsObjectArray

The function allows you to add an array of objects source the content of another array of
objects secondary. Expects three parameters: the first parameter in the source array in the
second parameter the secondary array, and the third parameter a Boolean, true inserts it at
the beginning of the array, false inserts it at the end of the array.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 21

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

object [] lobjArraySource = new object [3];
object [] lobjArraySecondary = new object [3];

object pobjByte1 = 48; // Byte or ASCII code for '0'
object pobjByte2 = 49; // Byte or ASCII code for '1'
object pobjByte3 = 50; // Byte or ASCII code for '2'

object pobjByte4 = 51; // Byte or ASCII code for '3'
object pobjByte5 = 52; // Byte or ASCII code for '4'
object pobjByte6 = 53; // Byte or ASCII code for '5'

lobjArraySource[0] = pobjByte1;
lobjArraySource[1] = pobjByte2;
lobjArraySource[2] = pobjByte3;

lobjArraySecondary [0] = pobjByte4;
lobjArraySecondary [1] = pobjByte5;
lobjArraySecondary [2] = pobjByte6;

lobjArraySource = Arrays .AddElementsObjectArray(lobjArraySource,
lobjArraySecondary, false);

10.1.5 AddElementsStringArray

The function allows you to add an array of strings source the content of another array of
strings secondary. Expects three parameters: the first parameter in the source array in the
second parameter the secondary array, and the third parameter a Boolean, true inserts it at
the beginning of the array, false inserts it at the end of the array.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

string [] lobjArraySource = new string [3];
string [] lobjArraySecondary = new string [3];

string pobjByte1 = “48”; // Byte or ASCII code for '0'
string pobjByte2 = “49”; // Byte or ASCII code for '1'
string pobjByte3 = “50”; // Byte or ASCII code for '2'

string pobjByte4 = “51”; // Byte or ASCII code for '3'
string pobjByte5 = “52”; // Byte or ASCII code for '4'

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 22

string pobjByte6 = “53”; // Byte or ASCII code for '5'

lobjArraySource[0] = pobjByte1;
lobjArraySource[1] = pobjByte2;
lobjArraySource[2] = pobjByte3;

lobjArraySecondary [0] = pobjByte4;
lobjArraySecondary [1] = pobjByte5;
lobjArraySecondary [2] = pobjByte6;

lobjArraySource = Arrays .AddElementsStringArray(lobjArraySource,
lobjArraySecondary, false);

10.1.6 AddIntegerToArray

The function allows to add one integer to the end or beginning of a given integer array,
resizing the original array. Expects three parameters: the first parameter in the source array
in the second parameter integer to add, and the third parameter a Boolean, true inserts it at
the beginning of the array, false inserts it at the end of the array.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

int [] lobjArraySource = new int [3];

int pobjByte1 = 48; // Byte or ASCII code for '0'
int pobjByte2 = 49; // Byte or ASCII code for '1'
int pobjByte3 = 50; // Byte or ASCII code for '2'

lobjArraySource[0] = pobjByte1;
lobjArraySource[1] = pobjByte2;
lobjArraySource[2] = pobjByte3;

lobjArraySource = Arrays .AddIntegerToArray(lobjArraySource, 52, false);
lobjArraySource = Arrays .AddIntegerToArray(lobjArraySource, 51, true);

10.1.7 AddObjectToArray

The function allows to add one object to the end or beginning of a given object array, resizing
the original array. Expects three parameters: the first parameter in the source array in the
second parameter object to add, and the third parameter a Boolean, true inserts it at the
beginning of the array, false inserts it at the end of the array.

At the head of the reference procedure be added to the class:

using SwanCSharp;

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 23

A sample line of code can be:

object [] lobjArraySource = new object [3];

object pobjByte1 = 48; // Byte or ASCII code for '0'
object pobjByte2 = 49; // Byte or ASCII code for '1'
object pobjByte3 = 50; // Byte or ASCII code for '2'

lobjArraySource[0] = pobjByte1;
lobjArraySource[1] = pobjByte2;
lobjArraySource[2] = pobjByte3;

lobjArraySource = Arrays .AddObjectToArray(lobjArraySource, 52, false);
lobjArraySource = Arrays .AddObjectToArray(lobjArraySource, 51, true);

10.1.8 AddStringToArray

The function allows to add one string to the end or beginning of a given string array, resizing
the original array. Expects three parameters: the first parameter in the source array in the
second parameter string to add, and the third parameter a Boolean, true inserts it at the
beginning of the array, false inserts it at the end of the array.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

string [] lobjArraySource = new string [3];

string pobjByte1 = “48”; // Byte or ASCII code for '0'
string pobjByte2 = “49”; // Byte or ASCII code for '1'
string pobjByte3 = “50”; // Byte or ASCII code for '2'

lobjArraySource[0] = pobjByte1;
lobjArraySource[1] = pobjByte2;
lobjArraySource[2] = pobjByte3;

lobjArraySource = Arrays .AddStringToArray(lobjArraySource, “52”, false);
lobjArraySource = Arrays .AddStringToArray(lobjArraySource, “51”, true);

10.1.9 ArrayResize

The purpose of the function "ArrayResize" is array resizing using a single function more
generic.

At the head of the reference procedure be added to the class:

using SwanCSharp;

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 24

A sample line of code can be:

string lstrArray = (string []) Arrays .ArrayResize(pstrArray, pstrArray.Length
+ 1);

10.1.10 FindItemInByteArray

The function allows search a byte within an array of bytes. Returns true if found and returns
false if not found.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Boolean lblnExists = Array .FindItemInByteArray(lobjByte,larrBytes);

10.1.11 FindItemInIntegerArray

The function allows search an integer within an array of integers. Returns true if found and
returns false if not found.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Boolean lblnExists =
Array .FindItemInIntegerArray(lintInteger,larrIntegers);

10.1.12 FindItemInObjectArray

The function allows search an object within an array of objects. Returns true if found and
returns false if not found.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Boolean lblnExists = Array .FindItemInObjectArray(lobjObject,larrObjects);

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 25

10.1.13 FindItemInStringArray

The function allows search a string within an array of strings. Returns true if found and
returns false if not found.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Boolean lblnExists = Array .FindItemInStringArray(lstrString,larrStrings);

10.1.14 RemoveItemsFromByteArray

The function allows you to remove a sequential number of elements in an array of bytes.
Expects three parameters: the first parameter in the source array in the second parameter
the starting index element to be deleted, and the third parameter the final index of deleted
item. The function returns an array of bytes with deleted items ranging from beginning to end.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

byte [] lobjArraySource = new byte [3];

byte pobjByte1 = 48;
byte pobjByte2 = 49;
byte pobjByte3 = 50;

lobjArraySource[0] = pobjByte1;
lobjArraySource[1] = pobjByte2;
lobjArraySource[2] = pobjByte3;

lobjArraySource = Array .RemoveItemsFromByteArray(lobjArraySource,1,2);

10.1.15 RemoveItemsFromIntegerArray

The function allows you to remove a sequential number of elements in an array of integer.
Expects three parameters: the first parameter in the source array in the second parameter
the starting index element to be deleted, and the third parameter the final index of deleted
item. The function returns an array of integer with deleted items ranging from beginning to
end.

At the head of the reference procedure be added to the class:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 26

using SwanCSharp;

A sample line of code can be:

int [] lobjArraySource = new int [3];

int pobjByte1 = 48;
int pobjByte2 = 49;
int pobjByte3 = 50;

lobjArraySource[0] = pobjByte1;
lobjArraySource[1] = pobjByte2;
lobjArraySource[2] = pobjByte3;

lobjArraySource = Array .RemoveItemsFromIntegerArray(lobjArraySource,1,2);

10.1.16 RemoveItemsFromObjectArray

The function allows you to remove a sequential number of elements in an array of objects.
Expects three parameters: the first parameter in the source array in the second parameter
the starting index element to be deleted, and the third parameter the final index of deleted
item. The function returns an array of bytes with deleted items ranging from beginning to end.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

object [] lobjArraySource = new object [3];

object pobjByte1 = 48;
object pobjByte2 = 49;
object pobjByte3 = 50;

lobjArraySource[0] = pobjByte1;
lobjArraySource[1] = pobjByte2;
lobjArraySource[2] = pobjByte3;

lobjArraySource = Array .RemoveItemsFromObjectArray(lobjArraySource,1,2);

10.1.17 RemoveItemsFromStringArray

The function allows you to remove a sequential number of elements in an array of strings.
Expects three parameters: the first parameter in the source array in the second parameter
the starting index element to be deleted, and the third parameter the final index of deleted
item. The function returns an array of strings with deleted items ranging from beginning to
end.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 27

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

string [] lobjArraySource = new string [3];

string pobjByte1 = “48”;
string pobjByte2 = “49”;
string pobjByte3 = “50”;

lobjArraySource[0] = pobjByte1;
lobjArraySource[1] = pobjByte2;
lobjArraySource[2] = pobjByte3;

lobjArraySource = Array .RemoveItemsFromStringArray(lobjArraySource,1,2);

10.2 SwanCSharp.Configurator

The class "Configurator" allows us to create a complete system management settings in the
applications developed.

10.2.1 Configurator

The class constructor "Configurator" requires support for storing configuration data, and can
select from SQL Server, Oracle, Firebird, Access, MySQL, or a standard text file. There is a
specific class for each database manager (ConfiguratorSQLServer, ConfiguratorOracle,
ConfiguratorFirebird, ConfiguratorAccess, ConfiguratorMySQL, and ConfiguratorFile). The
purpose of these classes is to incorporate complete management configuration parameters
for our application developed (including management windows). So every time you build the
object "Configurator", this class will check our database for table exists "AppConfig" and if it
has the necessary fields. Otherwise the first thing it will automatically create all the necessary
structure in our database chosen (a process that only runs the first time and without
developer intervention). In the event that the option chosen to host the configuration file is
written to disk, the builder will create a folder "Config" directory hanging execution of the
application and there will create the configuration file (parameter passed in the constructor).

In the case that the chosen data support is SQL Server, the data in the table "AppConfig" will
be encrypted to anyone externally to our developments can access.

In the case that the chosen database is Access, the data is not encrypted, but users are
recommended to protect the database password (from the Microsoft Access Security option).

In the case that the support option is a configuration file, the content is encrypted.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 28

In all other cases (Oracle, Firebird, and MySQL) the data is not encrypted, so it is
recommended to use authentication methods that include their own database managers.

At the head of the reference procedure be added to the class:

using SwanCSharp;

It is also important to inform the classes "Configurator" will be used throughout the
development of our application and therefore it is recommended to create the object using a
global variable for configuration data, and calls to the management functions, are accessible
from anywhere in the application.

To create the configurator on SQL Server:

public ConfiguratorSQLServer gobjConfig;

private void Form1_Load(object sender, EventArgs e)
{
 gobjConfig = new ConfiguratorSQLServer ("COMPUTER\\INSTANCE", "DataBase");

}

To create the configurator on Oracle:

public ConfiguratorOracle gobjConfig;

private void Form1_Load(object sender, EventArgs e)
{
 gobjConfig = new ConfiguratorOracle ("Data Source" , "User SQL", "Password
SQL");

}

To create the configurator on Firebird:

public ConfiguratorFirebird gobjConfig;

private void Form1_Load(object sender, EventArgs e)
{
 gobjConfig = new ConfiguratorFirebird ("Data Source" , "File database with
full path", "User SQL", "Password SQL", TCP Port);

}

To create the configurator on MySQL:

public ConfiguratorMySQL gobjConfig;

private void Form1_Load(object sender, EventArgs e)
{

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 29

 gobjConfig = new ConfiguratorMySQL ("Server address" , "File database with
full path", "User SQL", "Password SQL", TCP Port);

}

To create the configurator on Access:

public ConfiguratorAccess gobjConfig;

private void Form1_Load(object sender, EventArgs e)
{
 gobjConfig = new ConfiguratorAccess ("database filename" , "path database" ,
"password");

}

To create the configurator on disk file:

public ConfiguratorFile gobjConfig;

private void Form1_Load(object sender, EventArgs e)
{
 gobjConfig = new ConfiguratorFile ("filename.cfg");

}

10.2.1.1 AddNewConfigParameter

Used to create a new configuration parameter. Requires three parameters, one to indicate
which name will be the new parameter, the second to indicate the value of this parameter,
the third parameter to indicate whether it will be visible to the user or only for the internal use
of the application. The first two parameters are of type "String". For example:

gobjConfig.AddNewConfigParameter("PathFiles" , "c:\\test", true);

gobjConfig.AddNewConfigParameter("TimeOut" , "15", false);

10.2.1.2 ExistConfigParameter

Used to check if a parameter exists in the current configuration. Just need a parameter that
corresponds to the parameter name to look for. For example:

if (gobjConfig.ExistsConfigParameter("PathFiles"))
{

}

10.2.1.3 GetConfigParameterValue

Used to retrieve the value of an existing parameter. Just need a parameter that corresponds
to the parameter name to look for. For example:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 30

if (gobjConfig.ExistsConfigParameter("PathFiles"))
{
 string lstrPathFiles = gobjConfig.GetConfigParameterValue ("PathFiles");

}

10.2.1.4 GetDataTableFromAppConfig

Used to get a DataTable with all data related to the parameters. You receive a DataTable
containing the following Fields: IDParameter, CF_Name_Parameter, CF_Value_Parameter
and CF_Visible_Parameter. An example use of the function is:

private DataTable ldatParameters;

ldatParameters = gobjConfigurator.GetDataTableFromA ppConfig ();

10.2.1.5 GetDataTableFromAppConfigOnlyVisible

Used to get a DataTable with all data related to the parameters, but only obtain marked as
"Visible". You receive a DataTable containing the following Fields: IDParameter,
CF_Name_Parameter, CF_Value_Parameter and CF_Visible_Parameter. An example use of
the function is:

private DataTable ldatParameters;

ldatParameters = gobjConfigurator.GetDataTableFromA ppConfigOnlyVisible();

10.2.1.6 RemoveConfigParameter

Used to remove an existing parameter. Only requires one parameter corresponding to the
parameter name to remove. For example:

gobjConfig.RemoveConfigParameter("PathFiles");

10.2.1.7 ShowConfigurationWindow

The "Configuration Window" will allow us to view and modify display all configuration
parameters associated with our developments. The window can be displayed in two ways,
one way for the administrator where you can add, modify, and delete all parameters (visible
and invisible) which otherwise may query and modify only visible parameters, can not in any
case create a new or delete a configuration parameter.

As a suggestion we can say that the type of configuration can be combined with the
management class SwanCSharp users, so that we can create a MenuStrip two options, an
option that is enabled only for users Superuser profiles (developer application) for all permits
access to the configuration parameters. Another option is enabled only for administrators
(privileged user configuration); you can modify the values of those parameters "visible". The
third single user profile will not have access to the settings window.

To call the parameter changes window with all the permissions we can write the following
code:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 31

gobjConfig.ShowConfigurationWindow(false , true , InterfaceLanguage .English);

To call the parameter changes window to view and modify only the parameters "visible" we
can write the following code:

gobjConfig.ShowConfigurationWindow(true , false , InterfaceLanguage .English);

Important note: In the case of custom forms "SwanCSharp" created from the namespace
"SwanCSharp_Controls", you must use the class "WindowParameters" then existing in that
namespace instead of this function "ShowConfigurationWindow".

10.2.1.8 UpdateConfigParameterValue

Used to update the value of an existing parameter. Requires three parameters, the first to
indicate the name of the parameter to find, the second to specify the new value of the
parameter, and the third parameter to specify whether the user will be visible only for internal
use or application. For example:

gobjConfig.UpdateConfigParameterValue("PathFiles" , "c:\\test2" , true);

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 32

10.3 SwanCSharp.CRC32

The class "CRC32" allows us to calculate the value of CRC (32 bits) of any given file, or you
can calculate the CRC of a given text string (there are 2 overloads). This function is useful for
checking if a file has changed in structure, for example, can be used to verify that an original
file executable (EXE) has not been modified at any time, and protect any malicious changes.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

string lstrHash = "" ;
CRC32 lobjCRC = new CRC32("" , "Pruebas.exe");
lstrHash = lobjCRC.Hash;

The class constructor "CRC32" expected in the first parameter file path, and the second
parameter in the file name.

10.4 SwanCSharp.DataAccess

The DataAccess class allows us to manage databases, supporting SQL Server, Oracle,
Firebird, and Access, existing four DataConnection classes
(DatabaseConnectionSQLServer, DatabaseConnectionOracle, DatabaseConnectionFirebird,
DatabaseConnectionMySQL, DatabaseConnectionAccess). Those classes run through the
implementation of standard SQL statements, and has a function to create a connection to the
database, another function to close the connection, and two command execution functions,
one to run a SELECT, and one for execute INSERT, UPDATE, DELETE, or remaining
commands.

Are also available four secondary classes (DatabaseStructureSQLServer,
DatabaseStructureOracle, DatabaseStructureFirebird, DatabaseStructureMySQL, and
DatabaseStructureAccess) for creating and updating databases SQL Server, Oracle,
Firebird, MySQL, or Access dynamically at runtime, allowing you to create applications that
automatically create and update databases data.

10.4.1 DataConnectionSQLServer, DataConnectionOracle,

DataConnectionFirebird, DataConnectionMySQL, and

DataConnectionAccess

There are four types of connection (SQLServer, Oracle, Firebird, MySQL, and Access). Thus
DataAccess four classes can be used for making connections simpler and more portable
locally or remotely.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 33

To use DataConnectionSQLServer class requires access to the system to a version
"Commercial" or "Express" (free) SQL Server, either local (installed on the same machine) or
remote access (installed on another computer).

To use DataConnectionOracle class requires access to the system "Commercial" or
"Express" version (free) from Oracle, either local (installed on the same machine) or remote
access (installed on another computer). On the computer that is to be executed the
application using DataConnectionOracle is necessary to install the .Net Oracle software
connection called ODP .Net (a valid engine version for Oracle database is installed on the
system).

To use DataConnectionFirebird class requires access to the system a version of Firebird, as
well as copy along with "SwanCSharp.dll" the ".NET Provider" for Firebird (recommended file
"FirebirdSql.Data.FirebirdClient.dll "in version 2.5.2).

To use the class DataConnectionMySQL you must have previously installed on your system
"MySQL Connector/Net" software, version 6.7.4 or higher (you can download
http://dev.mysql.com/downloads/connector/net/).

At the head of the reference procedure be added to the class:

using SwanCSharp.DataAccess;

To create the connection with a Microsoft SQL Server database is executed:

DataConnectionSQLServer lobjConnection = new DataConnectionSQLServer ("PC-
NAME\\INSTANCE SQL" , "DataBase");

In the first parameter is passed the name of the instance of SQL Server installed also
indicating the name of the PC in Windows. The second parameter is the name of the
database created in SQL Server, in the third parameter is passed an enumeration specifying
that the database is Microsoft SQL Server. If Microsoft SQL Server is not installed locally,
and is installed remotely via a LAN or WAN address accessible from the computer that will
run the development, on the first instance will setting "IP ServerSQL \ \ INSTANCE SQL". But
to make remote connections from SwanCSharp.DataAccess class, you must first have
enabled remote connections to the Microsoft SQL Server installed on the remote computer,
and given all necessary permissions. There is another overload that also allows passing the
username and password for SQL authentication instead of Windows authentication.

To create the connection with an Oracle Server database is executed:

DatabaseConnectionOracle lobjDataBase = new
DatabaseConnectionOracle ("DataSource" , "user" , "password");

In the first parameter we pass the data source (for example in the case of Oracle 11g
Express would "XE"). The second parameter is the SQL user, the third parameter is passed
password. If what you want is a remote connection to Oracle, would include:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 34

DatabaseConnectionOracle lobjDataBase = new
DatabaseConnectionOracle ("//192.168.0.17:1521/XE" , "user" , "password");

Being 192.168.0.17 the IP of the computer that has Oracle Server, 1521 the TCP port being
communication (the standard port Oracle), and being XE data source in Oracle 11g Express
installation.

To create the connection with a Firebird database is executed:

DatabaseConnectionFirebird lobjDataBase = new
DatabaseConnectionFirebird "c:\\Database.fdb" , "SYSDBA", "masterkey");

In the first parameter we pass the database with its complete path. The second parameter is
the SQL user, the third parameter is passed password. If what you want is a remote
connection to Firebird would use the second constructor of the class:

DatabaseConnectionFirebird lobjDataBase = new
DatabaseConnectionFirebird ("192.168.0.17" , "c:\\Database.fdb" , "SYSDBA",
"masterkey" , 3050, lobjStruct);

Being 192.168.0.17 the IP of Firebird server, and being 3050 TCP communication port (the
Firebird standard port).

To create the connection with a MySQL database is executed:

DatabaseConnectionMySQL lobjDataBase = new DatabaseConnectionMySQL ("server
address" , "database name" , "user" , "password");

The first parameter passed is the MySQL server address, the second parameter is the name
of the database. The third parameter indicates the SQL user, the fourth parameter is passed
user password.

There exists a second constructor of the class at which you can add the TCP communication
port:

DatabaseConnectionMySQL lobjDataBase = new DatabaseConnectionMySQL ("server
address" , "database name" , "user" , "password" , TCP Port);

To create the connection with an Access database is executed:

DataConnectionAccess lobjConnection = new
DataConnectionAccess ("DataBase.mdb" , "Path DataBase" , "Password Database");

In the first parameter is passed the filename Access (. Mdb) that contains the database. The
second parameter is the full path location of the file on disk. The third parameter is the
Access Password if you have one (assigned in Microsoft Access in Security -> Set
Password), if no passphrase gets passed String.Empty.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 35

After creating the connection, and regardless of whether of SQL Server, Oracle, Firebird,
MySQL, or Access, there are two functions to execute commands, the first named
SQLSelectExecute exclusive data for the database (using a standard SQL command), eg :

lstrSQLCommand = "SELECT Name, Lastname FROM Staff" ;
DataTable lobjData = lobjConnection.SQLSelectExecute(lstrSQL Command);

foreach (DataRow dr in lobjData.Rows)
{
 Console .WriteLine("Staff Name: " + dr["Name"].ToString() + " -- Last
name: " + dr["Lastname"].ToString());

}

A second command called SQLCommandExecute to implement the rest of standard SQL
commands (INSERT, UPDATE, DELETE, etc.). For example to insert data into the database
we use:

string lstrSQLCommand = "INSERT INTO Staff (IDPerson, Name, Lastname,
Street, City) " ;
lstrSQLCommand += " VALUES (30, 'John', 'Smith', '5th', 'New York')" ;
Boolean lblnInsertOne = lobjConnection.SQLCommandExecute(l strSQLCommand);

lstrSQLCommand = "INSERT INTO Staff (IDPerson, Name, Lastname, Stree t,
City) " ;
lstrSQLCommand += " VALUES (40, 'David', 'Johnson', '8th', 'Boston')" ;
Boolean lblnInsertTwo = lobjConnection.SQLCommandExecute(l strSQLCommand);
if (lblnInsertOne)
{
 Console .WriteLine("The first row has been inserted sucessfully");
 }
 if (lblnInsertTwo)
 {
 Console .WriteLine("The second row has been inserted sucessfully");

 }

If we want to delete data from the database can be used:

lstrSQLCommand = "DELETE FROM STAFF WHERE IDPERSON=30";
Boolean lblnDeleteOne = lobjConnection.SQLCommandExecute(l strSQLCommand);

lstrSQLCommand = "DELETE FROM STAFF WHERE IDPERSON=40";
Boolean lblnDeleteTwo = lobjConnection.SQLCommandExecute(l strSQLCommand);
if (lblnDeleteOne)
{
 Console .WriteLine("The first row has been deleted sucessfully");
}
if (lblnDeleteTwo)
{
 Console .WriteLine("The second row has been deleted sucessfully");

}

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 36

In the same way we can run other existing standard SQL commands such as UPDATE.

After creating a connection which executes all SQL statements needed, must ALWAYS close
the connection, because if not closed will remain open in the data server and eventually
crash. To close the connection created is used:

lobjConnection.CloseConnection();

In the accompanying examples with this library (folder "Samples" coming within the ZIP file
downloaded SwanCSharp.zip) an example of a Data Access project that operates against
Access (the database is included) and against SQL Server (requires SQL Server installed
and the database and table created).

Inside the classes "Connection" there are many predefined functions that can help us make
small routine processes in databases without using source code to develop. Here we
describe these functions.

10.4.1.1 Transactions

In all “DataAccess” class constructors (SQL Server, Oracle, Firebird, MySQL, and Access)
exist the BeginTransaction, CommitTransaction, RollbackTransaction methods that allow us
to manage data transactions.

Once you create a connection, for create a transaction, executes the method:

lobjConnection.BeginTransaction();

After running a set of SQL commands, to confirm the transaction, the method executed is:

lobjConnection.CommitTransaction();

If you want cancel the transaction use the method:

lobjConnection.RollBackTransaction();

10.4.1.2 CalculateNextIntegerValue

This function allows us to calculate the next ID value to apply to a new record that is to be
inserted. As the first parameter is passed the name of the table that we will insert the record,
as a second parameter is passed the name of the field that has the characteristic of being
the ID field. The function accesses this table and returns a value "Int32" with the next value
that will ID the next row to be inserted.

In the header of the referenced method be added to the class:

using SwanCSharp.DataAccess;

An example of a call to the function is as follows:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 37

DataConnectionSQLServer lobjConnectionLogin = new
DataConnectionSQLServer ("PC-NAME\\SQL INSTANCE" , "Database" ,
DatabaseManager .SQLServer);

Int32 lintNumber = lobjConnectionLogin.CalculateNextInte gerValue("Staff" ,
"IDPerson");

10.4.1.3 CheckExistingDataInteger

This function checks if a chosen integer data exists in a given integer field within a specified
table in the database.

In the header of the referenced method be added to the class:

using SwanCSharp.DataAccess;

An example of a call to the function is as follows:

DataConnectionSQLServer lobjConnectionLogin = new
DataConnectionSQLServer ("PC-NAME\\SQL INSTANCE" , "Database" ,
DatabaseManager .SQLServer);

Boolean lblnResult = lobjConnectionLogin.CheckExistingData Integer("Table
Name", "Field Name" , "Data Integer to Compare");

10.4.1.4 CheckExistingDataString

This function checks if a chosen string data exists in a given string field within a specified
table in the database.

In the header of the referenced method be added to the class:

using SwanCSharp.DataAccess;

An example of a call to the function is as follows:

DataConnectionSQLServer lobjConnectionLogin = new
DataConnectionSQLServer ("PC-NAME\\SQL INSTANCE" , "Database" ,
DatabaseManager .SQLServer);

Boolean lblnResult = lobjConnectionLogin.CheckExistingData String("Table
Name", "Field Name" , "Data String to Compare");

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 38

10.4.2 DatabaseStructureSQLServer, DatabaseStructureOracle,

DataBaseStructureFirebird, DataBaseStructureMySQL, and

DatabaseStructureAccess

The purpose of the class is to dynamically create (at runtime) SQL Server, Oracle, Firebird,
MySQL, or Access databases. This class is very useful for developing applications that can
implicitly create and / or update the structure of their own databases for easy updating older
versions as they develop new versions.

Can also be used to create proprietary applications that may create a database or update it.

In case of the "DatabaseStructureOracle" class DO NOT need to pre-create the database
where data tables will be added, because Oracle does not work with databases but users’s
schemas. For this type of database data is ignored "Identity" in "DBSTRUCT" because there
is no "AutoNumber" field type.

In case of the "DatabaseStructureFirebird" and "DatabaseStructureMySQL" class is
necessary previous creation of the database where data tables will be created, because are
not going to create it. For this type of database data is ignored "Identity" in "DBSTRUCT"
because there is no "AutoNumber" field type.

In the case of “DatabaseStructureAccess” class you need to create an empty MDB file
previously because “DatabaseStructureAccess” is not going to create it, simply use one
empty file MDB to create the structure.

In the header of the referenced method be added to the class:

using SwanCSharp.DataAccess;

To create a data structure in SQL Server runs:

DatabaseStructureSQLServer lobjDataBase = new
DatabaseStructureSQLServer ("PC-NAME\\INSTANCE" , "DataBase" , lobjStruct);

To create a data structure in Oracle runs:

DatabaseStructureOracle lobjDataBase = new DatabaseStructureOracle ("XE" ,
"system" , "paginaweb" , lobjStruct);

To create a data structure in Firebird runs:

DatabaseStructureFirebird lobjDataBase = new
DatabaseStructureFirebird ("c:\\Database.fdb" , "SYSDBA", "masterkey" ,
lobjStruct);

or

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 39

DatabaseStructureFirebird lobjDataBase = new
DatabaseStructureFirebird ("localhost" , "c:\\Database.fdb" , "SYSDBA",
"masterkey" , 3050, lobjStruct);

To create a data structure in MySQL runs:

DatabaseStructureMySQL lobjDataBase = new DatabaseStructureMySQL ("server
address" , "Database name" , "user" , "password" , lobjStruct);

or

DatabaseStructureMySQL lobjDataBase = new DatabaseStructureMySQL ("server
address" , "Database name" , "user" , "password" , TCP Port , lobjStruct);

To create a data structure in an Access file runs:

DatabaseStructureAccess lobjDataBase = new
DatabaseStructureAccess ("DataBase.mdb" , "" , "" , lobjStruct);

In both cases the last parameter, which we are passing "lobjStruct", refers to the existing
structure in the class DBSTRUCT DataAccess. This structure consists of variables
TableName, FieldName, FieldType, PrimaryKey, Identity, and NotNull. Creating an array of
DBSTRUCT, we define the desired structure for our database. Then the DBSTRUCT array is
passed to the constructor of the “DatabaseStructure” classes which is responsible for
creating the entire structure.

Below is an example of creating a structure:

DBStruct [] lobjStruct = new DBStruct [8];

lobjStruct[0].TableName = "Staff" ;
lobjStruct[0].FieldName = "IDPerson" ;
lobjStruct[0].FieldType = "int" ;
lobjStruct[0].PrimaryKey = true ;
lobjStruct[0].Identity = true ;
lobjStruct[0].NotNull = true ;

lobjStruct[1].TableName = "Staff" ;
lobjStruct[1].FieldName = "Name" ;
lobjStruct[1].FieldType = "varchar(20)" ;
lobjStruct[1].PrimaryKey = true ;
lobjStruct[1].Identity = false ;
lobjStruct[1].NotNull = true ;

lobjStruct[2].TableName = "Staff" ;
lobjStruct[2].FieldName = "Lastname" ;
lobjStruct[2].FieldType = "varchar(20)" ;
lobjStruct[2].PrimaryKey = false ;
lobjStruct[2].Identity = false ;
lobjStruct[2].NotNull = true ;

lobjStruct[3].TableName = "Staff" ;

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 40

lobjStruct[3].FieldName = "Street" ;
lobjStruct[3].FieldType = "varchar(50)" ;
lobjStruct[3].PrimaryKey = false ;
lobjStruct[3].Identity = false ;
lobjStruct[3].NotNull = true ;

lobjStruct[4].TableName = "Staff" ;
lobjStruct[4].FieldName = "City" ;
lobjStruct[4].FieldType = "varchar(50)" ;
lobjStruct[4].PrimaryKey = false ;
lobjStruct[4].Identity = false ;
lobjStruct[4].NotNull = true ;

lobjStruct[5].TableName = "Auxiliary" ;
lobjStruct[5].FieldName = "IDPerson" ;
lobjStruct[5].FieldType = "int" ;
lobjStruct[5].PrimaryKey = true ;
lobjStruct[5].Identity = false ;
lobjStruct[5].NotNull = true ;

lobjStruct[6].TableName = "Auxiliary" ;
lobjStruct[6].FieldName = "DischargeDate" ;
lobjStruct[6].FieldType = "datetime" ;
lobjStruct[6].PrimaryKey = false ;
lobjStruct[6].Identity = false ;
lobjStruct[6].NotNull = false ;

lobjStruct[7].TableName = "Auxiliary" ;
lobjStruct[7].FieldName = "Salary" ;
lobjStruct[7].FieldType = "int" ;
lobjStruct[7].PrimaryKey = false ;
lobjStruct[7].Identity = false ;

lobjStruct[7].NotNull = false ;

// SQLServer

DatabaseStructureSQLServer lobjDataBase = new
DatabaseStructureSQLServer ("PC-NAME\\INSTANCE" , "DataBase" , lobjStruct);

// Access

DatabaseStructureAccess lobjDataBase = new
DatabaseStructureAccess ("DataBase.mdb" , "" , "" , lobjStruct);

In the previous example is defining a structure of two tables (Staff, Auxiliary) for DataBase.
For the first table (Staff) defines two primary key fields and three normal fields. For the
second table (Auxiliary) defines a primary key field and two standard fields. With this
example we are creating dynamically from source code structure of a database in both
Access and SQLServer.
When creating and defining the structure DBSTRUCT just have to consider some rules:

• Can simultaneously create all tables designed on one DBSTRUCT and in a single run
of the DatabaseStructure case, but the fields in each table should be correlated within
DBSTRUCT elements, i.e. can not intercalate fields of different tables.

• Each table must have at least a primary key field; otherwise the table will not be
created and can have more than one primary key field.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 41

• The "FieldType" is defined using the same types of data that exist in SQL Server and
Access.

• The rules for creating the tables are the same as in SQL Server and Access, for
example, you can not create a primary key field if it is a "false" variable in "NotNull"
for the field, or you cannot assign the Identity property to a field type different of "int".

In the examples that come into the library ("Samples" folder that is inside the ZIP file
downloaded SwanCSharp.zip) exist an example of a project "DatabaseCreation", operating
against Access (the database is included) and against SQL Server (SQL Server is required
to have installed and the database and table created).

10.4.3 DataExport

The class "DataExport" allows you to export an object "DataTable" to Excel XLS or CSV
format, allowing export data from Access or SQL Server obtained by DataConnection class
or any other DataTable loaded manually or obtained in another way.

At the head of the reference procedure be added to the class:

using SwanCSharp.DataAccess;

A sample line of code can be:

// Open Connection
DataConnectionSQLServer lobjConnection = new DataConnectionSQLServer ("PC-
NAME\\INSTANCE_SQL", "DataBase" , DatabaseManager .SQLServer);

//SELECT
string lstrSQLCommand = "SELECT * FROM Staff" ;
DataTable lobjData = lobjConnection.SQLSelectExecute(lstrSQL Command);

// Xls
DataExport .ExportDatabaseToExcel(lobjData, ExcelFormat .Excel,
"Test_Xls.xls");
// Csv
DataExport .ExportDatabaseToExcel(lobjData, ExcelFormat .CSV,
"Test_CSV.xls");

In the accompanying examples to the library ("Samples" folder that is inside the ZIP file
downloaded SwanCSharp.zip) an example of a project "DataExport" that allows export data
to Excel (CSV or XLS).

10.4.4 Utilities

The namespace "DataAccess" has a "Utilities" class which includes all functions that do not
require a constructor to be called. These functions allow us to have some utility on
databases.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 42

10.4.4.1 DataGridViewToDataTable

The "DataGridViewToDataTable" function allows us to convert a control "DataGridView"
(Windows.Forms) in a datatable.

At the head of the reference procedure be added to the class:

using SwanCSharp.DataAccess;

A sample line of code can be:

DataTable ldatData = Utilities .DataGridViewToDataTable(pobjDataGridView);

10.4.4.2 ShowQueryDataModifyWindow

The "ShowQueryDataModifyWindow" function allows us to display a window with a "Grid"
data, modify the desired cells, and returns a "DataTable" with updated data:

The "ShowQueryDataModifyWindow" function expects to receive seven parameters which
are: the DataTable with the data, an array of integers with datatable columns not want to
show (if you want to display all, pass "null", and the number so each column is ordinal, with
"0" in the first column), the desired title for the form to be displayed, the desired title for the
"frame" shown on the form, the size of the window (using the listed QueryWindowSize
choosing from Small, Medium, High), the language of the form (using the listed
InterfaceLanguage, choosing between Spanish and English), and finally a "true" or "false" if
you want the last column automatically expands to the full width of the grid, or not.

After running the function displays a Windows form showing the data on screen. The user
can modify the data in the desired cells, clicking on "Exit" function will return a DataTable
with all modified data.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 43

At the head of the reference procedure be added to the class:

using SwanCSharp.DataAccess;

A sample line of code can be:

DataConnectionAccess lobjConnection = new
DataConnectionAccess ("DataBase.mdb" , "" , "" , DatabaseManager .Access);
string lstrSQL = "SELECT * FROM Staff" ;
DataTable ldatData = lobjConnection.SQLSelectExecute(lstrSQL);
lobjConnection.CloseConnection();

int [] lintHiddenColumns = new int [2];

lintHiddenColumns[0] = 0;
lintHiddenColumns[1] = 3;

ldatData = Utilities .ShowQueryDataModifyWindow(ldatData, lintHiddenColu mns,
"Query Data SwanCSharp 2.0" , " Main Data " , QueryWindowSize .Medium,
InterfaceLanguage .English, true);

In the examples that come into the library ("Samples" folder that is inside the ZIP file
downloaded SwanCSharp.zip) exist an example of a project "DataQueryAccess", operating
against Access (database is included).

10.4.4.3 ShowQueryDataWindow

The "ShowQueryDataWindow" function allows us to display a window with a "grid" of data
and returns a "DataRow" with the row that is selected in the window. A screen is as follows:

The "ShowQueryDataWindow" function expects to receive seven parameters which are: the
DataTable with the data, an array of integers with columns that not want to show (if you want

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 44

to display all, pass "null", and the number so each column is ordinal, with "0" in the first
column), the desired title for the form to be displayed, the desired title for the "frame" shown
on the form, the size of the window (using the listed QueryWindowSize choosing from Small,
Medium, High), the language of the form (using the listed InterfaceLanguage, choosing
between Spanish and English), and finally a "true" or "false" if you want the last column
automatically expands to the full width of the grid, or not.

After running the function displays a Windows form showing the data on screen. The user
can select a line by double-clicking on the row, or click on the row and clicking the "Select"
button. The function returns a "DataRow" with the data of the selected row.

At the head of the reference procedure be added to the class:

using SwanCSharp.DataAccess;

A sample line of code can be:

DataConnectionAccess lobjConnection = new
DataConnectionAccess ("DataBase.mdb" , "" , "" , DatabaseManager .Access);
string lstrSQL = "SELECT * FROM Staff" ;
DataTable ldatData = lobjConnection.SQLSelectExecute(lstrSQL);
lobjConnection.CloseConnection();

DataRow ldarRow;
int [] lintHiddenColumns = new int [2];

lintHiddenColumns[0] = 0;
lintHiddenColumns[1] = 4;

ldarRow = Utilities .ShowQueryDataWindow(ldatData, lintHiddenColumns, "Query
Data SwanCSharp" , " Main Data " , QueryWindowSize .Medium,
InterfaceLanguage .English, true);

In the examples that come into the library ("Samples" folder that is inside the ZIP file
downloaded SwanCSharp.zip) exist an example of a project "DataQueryAccess", operating
against Access (database is included).

Important note: In the case of custom forms "SwanCSharp" created from the namespace
"SwanCSharp_Controls", you must use the class "WindowDataQuery" then existing in that
namespace instead of this function "ShowQueryDataWindow".

10.5 SwanCSharp.Directories

La clase "Directories" incorpora una serie de funciones de asistencia con el manejo de
directorios en rutas de disco.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 45

10.5.1 CopyDirectory

The "CopyDirectory" allows a source directory to copy in a different destination. The function
takes two parameters <string>, the first with the source path, the second with the target path,
and a third Boolean parameter which reports if you want the copy is recursive or not (besides
recursive copy the folder and its files, copy all folders along with their dependent files from
the original). The function returns a Boolean value reported if the process has been executed
or not.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Boolean lblnResult = Directories .CopyDirectory(“c:\testSource”,
“c:\testTarget”, true);

10.5.2 GetFolderNamesRecursively

This function, given a path to a home folder, returns a string array with all existing folders in
recursive tree structure.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

string [] lstrFolders =
Directories .GetFolderNamesRecursively(“c:\\testSource”);

10.6 SwanCSharp.Encryption

The class "Encryption" incorporates a class to encrypt data and several features that allow
encrypt and decrypt data in blocks of information. The cipher used is AES that can encrypt
using MD5 or SHA1 HASH, using two keywords.

At the head of the reference procedure be added to the class:

using SwanCSharp.Encryption;

A sample line of code can be:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 46

AES lobjAES = new AES("ourpassphrase" , "oursaltvalue" , HashFunction .SHA1,
2, "2hs@3TY9F4fz5%tv" , KeySize .Key256);

The first parameter of the constructor refers to the keyword that is used to encrypt a "string"
with ASCII values freely chosen by the developer, the second parameter corresponds to the
word to be used in combination with the first parameter to generate encryption (also a
"string" free consists of ASCII values). The third parameter is supplied from existing
HashFunction enumerated in the class and allows you to select whether you want to perform
encryption using MD5 or SHA-1 (the second is more secure). The fourth parameter is used
to report the number of iterations to generate desired encryption, with 2 iterations is enough.
The fifth parameter refers to the initialization vector must always be a "string" of 16 ASCII
characters long accurate. The sixth parameter refers to the class KeySize enumerated and
you can select the length of the generated key, making it possible to choose between 128,
192, or 256 (if the key size is large, increase the security of encryption).

When data is encrypted with SwanCSharp.Encryption class, the six parameters used for
encryption, shall be six parameters which must be used to decrypt the same string.

10.6.1 BytesEncryptToFile

It is used to encrypt a byte array and the result is saved directly in a specific file on a given
path.

At the head of the reference procedure be added to the class:

using SwanCSharp.Encryption;

Then you build the class of encryption:
:

AES lobjAES = new AES("ourpassphrase" , "oursaltvalue" , HashFunction .SHA1,
2, "2hs@3TY9F4fz5%tv" , KeySize .Key256);

A sample line of code can be:

Boolean lblnResult = lobjAES.BytesEncryptToFile(pobjBytes,
"FileDecrypted.txt" , "c:\\test" , true);

10.6.2 FileDecrypt

It is used to decrypt a file that was previously encrypted FileEncrypt function. Expects five
parameters where the first four parameters collect information and the source file and
destination file paths, and the fifth parameter is given a value "true" if you want to overwrite
the destination file that may already exist, and false if you do not want to overwrite the file.

At the head of the reference procedure be added to the class:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 47

using SwanCSharp.Encryption;

Then you build the class of encryption (user must report the same six parameters used to
encrypt the file you want to decrypt):

AES lobjAES = new AES("ourpassphrase" , "oursaltvalue" , HashFunction .SHA1,
2, "2hs@3TY9F4fz5%tv" , KeySize .Key256);

A sample line of code can be:

Boolean lblnResult = lobjAES.FileDecrypt("FileEncrypted.txt" , "" ,
"FileDecrypted.txt" , "" , true);

10.6.3 FileDecryptToBytes

Used to decrypt an array of bytes in a file that was previously encrypted or
BytesEncryptToFile FileEncrypt function. Expects two parameters with the source file name
and path of the source file.

At the head of the reference procedure be added to the class:

using SwanCSharp.Encryption;

Then you build the class of encryption (user must report the same six parameters used to
encrypt the file you want to decrypt):

AES lobjAES = new AES("ourpassphrase" , "oursaltvalue" , HashFunction .SHA1,
2, "2hs@3TY9F4fz5%tv" , KeySize .Key256);

A sample line of code can be:

byte [] lobjBytes = lobjAES.FileDecryptToBytes("FileEncrypted.txt" ,
"c:\\test");

10.6.4 FileEncrypt

It is used to encrypt a file. Expects five parameters where the first four parameters collect
information and the source file and destination file paths, and the fifth parameter is given a
value "true" if you want to overwrite the destination file that may already exist, and false if
you do not want to overwrite the file.

At the head of the reference procedure be added to the class:

using SwanCSharp.Encryption;

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 48

Then you build the class of encryption (the user must choose the six parameters to use to
encrypt the file, these same parameters should be used for decryption):

AES lobjAES = new AES("ourpassphrase" , "oursaltvalue" , HashFunction .SHA1,
2, "2hs@3TY9F4fz5%tv" , KeySize .Key256);

A sample line of code can be:

Boolean lblnResult = lobjAES.FileEncrypt("FileToEncrypt.txt" , "" ,
"FileEncrypted.txt" , "" , true);

10.6.5 StringDecrypt

It is used to decrypt a "string" that was previously encrypted StringEncrypt function.
Parameter is passed as the "string" to decrypt, and the function returns the second
parameter a reference to the "string" decryption.

At the head of the reference procedure be added to the class:

using SwanCSharp.Encryption;

Then you build the class of encryption (user must report the same six parameters used to
encrypt the string you want to decrypt):

AES lobjAES = new AES("ourpassphrase" , "oursaltvalue" , HashFunction .SHA1,
2, "2hs@3TY9F4fz5%tv" , KeySize .Key256);

A sample line of code can be:

string lstrDecryptedText = "" ;
Boolean lblnResult = lobjAES.StringDecrypt(lstrEncrypted, out
lstrDecryptedText);

10.6.6 StringEncrypt

It is used to encrypt a "string". Parameter is passed as the "string" to encrypt, and the
function returns the "string" encrypted.

At the head of the reference procedure be added to the class:

using SwanCSharp.Encryption;

Then you build the class of encryption (the user must choose the six parameters to use to
encrypt the file, these same parameters should be used for decryption):

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 49

AES lobjAES = new AES("ourpassphrase" , "oursaltvalue" , HashFunction .SHA1,
2, "2hs@3TY9F4fz5%tv" , KeySize .Key256);

A sample line of code can be:

string lstrEncrypted = lobjAES.StringEncrypt("Test of Encryption");
Console .WriteLine("Encrypted Text: " + lstrEncrypted);

10.7 SwanCSharp.Files

Files Class incorporates a number of support functions with file management and
disk paths.

10.7.1 CheckPathEndsBackslash

The function receives a parameter <string> with a path of a disk, check if the path ends in
backslash (\), if not already added it and returns the new <string>, if you already have the bar
returns same string.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

lstrFilesPath = Files.CheckPathEndsBackslash(lstrFi lesPath);

10.7.2 CheckPathEndsSlash

The function receives a parameter <string> with a path of a disk, check if the path ends in
slash (/), if not already added it and returns the new <string>, if you already have the bar
returns same string.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

lstrFilesPath = Files.CheckPathEndsSlash(lstrFilesP ath);

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 50

10.7.3 FileMove

The purpose of the function is to move a source file to a destination (indicating the name of
the moved file). Expects three parameters and returns a bool value that reports whether it
has moved or not. The first parameter is the file name to move with full path, the second
parameter is the target file name with full path, in the third parameter is reported by a bool
value if you want to overwrite the target file in case exist.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Boolean lblnFileMoved = Files .FileMove(“c:\\test\\test.txt”,
“c:\\NewTest\\test.txt”, true);

10.7.4 FileToArrayBytes

The purpose of the function is to read a file and convert its contents into an array of bytes.
Expects two parameters, the first with the path where the file is located, and the second with
the filename. The function returns an array of bytes to the file contents.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

byte [] lobjFileNameByte = Files .FileToArrayBytes(pstrSourcePath,
pstrFileName);

10.7.5 GZIPUncompressFile

The purpose of the function is decompressing a give GZip file in another target file passed by
parameter.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Boolean lblnResult = Files .GZIPUncompressFile(pstrFileGZ,
pstrTargetFileName);

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 51

10.7.6 RemoveInvalidCharsFileName

The purpose of the function is removing from string all those characters that can not be part
of a file name. The first parameter is file name, the second parameter must be defined by
that character should replace those characters that are considered invalid. The function
returns a string with the converted string.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

string lstrFileNameNew = Files .RemoveInvalidCharsFileName(pstrFileName,
'_');

10.7.7 SaveArrayBytesToFile

The purpose of the function is to dump the contents of an array of bytes in a particular file in
the desired location recording. The function takes four parameters, the first expects the array
of bytes, and the second length of the array will be the size of the file when it is generated, in
the third receives the path where to store the file, and in the fourth parameter is the name of
the file to save. The function creates the file in the desired path, and returns true if the
process has run successfully, and false if it failed to generate the file.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Boolean lblnSaved = Files .SaveArrayBytesToFile(lobjDataBytes,
receivedBytesLen, pstrTargetPath, pstrFileName);

10.7.8 SeparateFileNameAndPath

The purpose of the function is to receive a complete path of a file (path + filename) and
separated into two different variables the path and filename. The first parameter is reported
with the filename + path, and in the second and third parameter is received by reference a
variable with path and other variable with the filename.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 52

string lstrPathFileName = "";

string lstrFileName = "";
Files .SeparateFileNameAndPath(@"c:\test\filetest.txt", ref
lstrPathFileName, ref lstrFileName);

10.7.9 UnZip

The purpose of the function is to decompress a ZIP file. The first parameter includes is the
zip file to unzip with full path, and the second parameter contains the target path where you
save the uncompressed files.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Boolean lblnResult = UnZip(@"C:\Zip\Prueba.zip" , @"C:\Unzip");

In the examples that come to the library ("Samples" folder that is inside the ZIP file
downloaded SwanCSharp.zip) exists an example of a ZIP decompression files.

10.7.10 Zip

The purpose of the function is compress into a single ZIP file one or more files located in a
Path or in several different paths. The first parameter included zip file with full path (required
include the path), and the second parameter contains an array of strings where each file is
defined to be compressed. To generate the ZIP file is necessary for each file included in the
array exists, and include the full path to the file.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

string [] lstrFileNames = new string [2];
lstrFileNames[0] = "C:\\Test\\File1.txt" ;
lstrFileNames[1] = "C:\\Test\\File2.txt" ;

Boolean lblnResult = Files .Zip(@"C:\Zip\Prueba.zip" , lstrFileNames);

In the examples that come to the library ("Samples" folder that is inside the ZIP file
downloaded SwanCSharp.zip) exists an example of a ZIP compression files.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 53

10.8 SwanCSharp.Imaging

Imaging class incorporates a number of functions to support the management of image files.

10.8.1 BitmapResize

The purpose of the function is to pick an image source, and from it create another image with
the dimensions passed as parameter. The first parameter, expected to be received, is the
source image, in the second parameter the width in pixels (integer), and the third parameter
height in pixels (integer). The function returns a "Bitmap" with a new image with the specified
dimensions.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Bitmap lobjNewImage = Imaging .BitmapResize(lobjImage, 640, 480);

10.8.2 BitmapToMemoryStream

The purpose of the function is picking up a source image and convert to the data type
MemoryStream. The first parameter expects to receive the source image, the second
parameter it is expected to receive the copied image format. The function returns the object
MemoryStream loaded.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

MemoryStream lobjStream = Imaging .BitmapToMemoryStream(lobjImage,
System.Drawing.Imaging. ImageFormat .Jpeg);

10.8.3 BitmapToUnsafeBytes

The purpose of the function is to pick up a source bitmap y and convert to Unsafe bytes
(byte[]) data type. The first parameter contains the source bitmap. The function returns “byte
unsafe” object. This function can be useful when you need to pass an image to a function
created in C++.

At the head of the reference procedure be added to the class:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 54

using SwanCSharp;

A sample line of code can be:

byte[] lobjUnsafeBytes = Imaging .BitmapToUnsafeBytes(lobjImage);

10.8.4 ByteArrayToBitmap

The purpose of the function is to pick up an array of bytes and convert to Bitmap data type, in
the first parameter contains the array of bytes, and the function returns a "Bitmap".

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Bitmap lobjBitmap = Imaging .ByteArrayToBitmap(parrByteArray);

10.8.5 ByteArrayToIcon

The purpose of the function is to pick up an array of bytes and convert to Icon data type, in
the first parameter contains the array of bytes, and the function returns an "Icon".

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Icon lobjIcon = Imaging .ByteArrayToIcon(parrByteArray);

10.8.6 ByteArrayToImage

The purpose of the function is to pick up an array of bytes and convert to Image data type, in
the first parameter contains the array of bytes, and the function returns an "Image".

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 55

Image lobjImage = Imaging .ByteArrayToImage(parrByteArray);

10.8.7 CompareImages

The purpose of the function is to compare two images passed by parameter returning true if
they are identical and false if not.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

bool lblnEqual = Imaging .CompareImages(pobjBitmap1, pobjBitmap2);

10.8.8 ConvertBase64ToByteArray

The purpose of the function is to collect a "String" Base64 format and dump on an array of
bytes.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

byte[] lobjBytes = Imaging .ConvertBase64ToByteArray(pstrFile64);

10.8.9 ConvertBase64ToFile

The purpose of the function is to collect a "String" Base64 format and dump on a given file.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Imaging .ConvertBase64ToFile(pstrFile64, pstrTargetFile,
pstrPathTargetFile);

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 56

10.8.10 ConvertFileToBase64

The purpose of the function is to collect a file and convert to the "String" Base64 data type
format.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

string lstrImage64 = Imaging .ConvertFileToBase64(pstrFilename,
pstrPathFile);

10.8.11 ConvertBytesToBase64

The purpose of the function is to collect an array of bytes and convert to the "String" Base64
data type format.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

string lstrImage64 = Imaging .ConvertBytesToBase64(pobjBytesArray);

10.8.12 ConvertImageBytesToBase64HTML

The purpose of the function is to pick up an array of bytes of an image and convert it to
Base64 format type to embed in HTML, allowing us to insert an image embedded in a web
page using the tag "IMG SRC".

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

string lstrImage64 = Imaging .ConvertImageBytesToBase64HTML(pobjImageBytes);

lobjHTMLFile.WriteLine("");

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 57

10.8.13 ConvertImageFileToBase64HTML

The purpose of the function is to pick up an image file and convert it to Base64 format type to
embed in HTML, allowing us to insert an image embedded in a web page using the tag "IMG
SRC".

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

string lstrImage64 = Imaging .ConvertImageFileToBase64HTML(“Image.jpg”,
“C:\\FilePath”);

lobjHTMLFile.WriteLine("");

10.8.14 ConvertTo8BppGrayscale

The purpose of the function is to pick an image file and convert it to grayscale with a depth of
8-bit (256 gray indexed).

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Bitmap lobjResultBitmap = Imaging .ConvertTo8BppGrayscale(lobjBitmap);

10.8.15 DominantColor

The purpose of the function is picking up a source image and get the dominant colour of the
image. In the first parameter receives the image, and the parameters two, three, and four are
passed by reference a string for each RGB colour channel (red, green, blue). The load
function in the last three parameters the dominant colour value broken down into channels.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

string lstrRed = "";

string lstrGreen = "";

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 58

string lstrBlue = "";
Imaging .DominantColor(lobjImage, ref lstrRed, ref lstrGreen, ref lstrBlue);

10.8.16 GetDifferenceFromImages

The purpose of the function is to get the number of different pixels in two images that are
passed as parameters.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

double ldblDifference = Imaging .GetDifferenceFromImages(pobjBitmap1,
pobjBitmap2);

10.8.17 IconToByteArray

The purpose of the function is to pick up an icon object and convert to bytes array, in the first
parameter contains the icon object, and the function returns an array of bytes.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

byte[] lobjBytes = Imaging .IconToByteArray(pobjIcon);

10.9 SwanCSharp.Internet

The class "Internet" allows developments incorporate utility functions related to the world of
WANs and the Internet.

10.9.1 BreakdownFTPString

The purpose of this function is to collect (using string) string FTP connection such as
"ftp://user:password @ip_ftp/AccessPath" and extract from it each element separately. The
function returns a string array that contains the following values:

• Position 0. - Returns the user name to access the FTP.
• Position 1. - Returns the password to access the FTP.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 59

• Position 2. - Returns the FTP server IP.
• Position 3. - Returns the FTP folder access.

At the head of the reference procedure be added to the class:

using SwanCSharp.Internet

A sample line of code can be:

string [] lstrFTPData =
Utilities .BreakdownFTPString("ftp://user:password@192.168.1. 1/data/files");

10.9.2 CheckInternetConnection

The purpose of this function is to check for Internet connection on the computer.

At the head of the reference procedure be added to the class:

using SwanCSharp.Internet;

A sample line of code can be:

Boolean lblnConnected = Utilities .CheckInternetConnection();

10.9.3 FTPClient

La clase “FTPClient” nos permite incorporar a nuestros desarrollos un potente cliente FTP
que nos permitirá subir o bajar archivos de un servidor FTP, así como borrar archivos,
ejecutar comandos como LIST, ChangeDirectory, RemoveFile, etc.

At the head of the reference procedure be added to the class:

using SwanCSharp.Internet;

A sample of code can be:

FTPClient lobjFTPClient = new FTPClient ();

lobjFTPClient.port = 21;
lobjFTPClient.Connect(“Server IP”, 21, “User FTP”, “Password FTP”);

string lstrFolder = “files/down/”;

if (lstrFolder != String .Empty)
{
 lobjFTPClient.ChangeDirectory(lstrFolder);
}

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 60

//Upload a File
lobjFTPClient.Upload(“File to Upload”, “Remote File Name”);
while (lobjFTPClient.Uploading() > 0)
{
}

//Download a File
lobjFTPClient.Download(“File to Download”, “Local F ileName”);
while (lobjFTPClient.Downloading() > 0)
{
}

lobjFTPClient.Disconnect();

10.9.4 GetDomainNameFromIP

The purpose of this function is to obtain the domain name linked to a given valid IP.

At the head of the reference procedure be added to the class:

using SwanCSharp.Internet;

A sample line of code can be:

string lstrDomainName = GetDomainNameFromIP("255.255.255.255");

10.9.5 GetFileFromHttp

The purpose of this function is to download an uploaded file to the Internet via HTTP
address.

At the head of the reference procedure be added to the class:

using SwanCSharp.Internet;

A sample line of code can be:

string =
GetFileFromHttp("http://www.domain.com/source_folder/source_file.tx t" ,
"Target_file.txt" , @"c:\targetfolder");

10.9.6 GetIPFromDomainName

The purpose of this function is to obtain the IP address linked to a given Internet domain
name.

At the head of the reference procedure be added to the class:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 61

using SwanCSharp.Internet;

A sample line of code can be:

string lstrIP = GetIPFromDomainName("www.domainname.com");

10.9.7 GetWebProxyActive

The purpose of this function is to obtain all information from the web proxy that could be
active on the execution computer, including credentials.

At the head of the reference procedure be added to the class:

using SwanCSharp.Internet;

A sample line of code can be:

WebProxy lobjProxy = GetWebProxyActive("http://www.anydomainname.com");

10.9.8 IPToUint32

The purpose of this function is to convert a string standard IP address in a Uint32 data type.

At the head of the reference procedure be added to the class:

using SwanCSharp.Internet;

A sample line of code can be:

Uint32 lUintIP = Utilities .IPToUint32("192.168.1.1");

10.9.9 Uint32ToIP

The purpose of this function is to convert a Uint32 IP address into a standard string address.

At the head of the reference procedure be added to the class:

using SwanCSharp.Internet;

A sample line of code can be:

string lstrIPAddress = Utilities .Uint32ToIP(lUintIPAddress);

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 62

10.10 SwanCSharp.Logger

The class "Logger" allows developments incorporate effective management of a system log
and can publish in the log file error messages, warning, or information.

10.10.1 Logger

Order to use the Logger class must create the object passing two parameters: The first
parameter is the path where you will generate each log file (if left blank, it will use the default
path of execution), and the second parameter the name of our application.

When you run the constructor will create the folder "Log" in the path selected target, and into
that folder will be created all log files.

At the head of the reference procedure be added to the class:

using SwanCSharp.Logger;

In order to create object "Logger" should add the line (in the developments in this class is
used "Logger" is recommended to create this object globally) to publish messages from any
class or function without having to new creation of this object:

Logger lobjLogger = new Logger ("" , "DEMO");

Subsequently, each time you want to post a message, use the "WriteMessageToLog",
allowing us to specify the message text, and the classification of the message (Error,
Information, and Warning).

lobjLogger.WriteMessageToLog("Error Message" ,
Logger . MessageClassification .Error);

lobjLogger.WriteMessageToLog("Information Message" ,
Logger . MessageClassification .Information);

lobjLogger.WriteMessageToLog("Warning Message" ,
Logger . MessageClassification .Warning);

In the execution of each message, this function will create a file which will store the daily
posts with the classification of the message, and the exact date-time. The names of the files
created will begin with the application name passed in the second parameter in the
constructor of this class.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 63

10.11 SwanCSharp.Miscellaneous

Miscellaneous Class is intended include all those functions and procedures that do not fit into
any of the other major classes. We can define this class as a class that stores all generic
functions.

10.11.1 CalculationDiskSpace

The purpose of the procedure is to calculate the free space available on a given drive
(calculated in Bytes).

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

long llngDiskSpaceInBytes = Miscellaneous .CalculateDiskSpace("c:")

10.11.2 ComputerCloseSession

The purpose of the procedure is to close the open session in the operating system of the
computer where the application runs.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Miscellaneous .ComputerCloseSession(10) // Ten seconds delay

10.11.3 Delay

The purpose of the procedure is to produce an expected delay determined by the second
parameter passed.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Miscellaneous .Delay(10) // Ten seconds delay

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 64

10.11.4 ExistsLibrary

The purpose of the procedure is to check if a DLL or EXE file exists in the system. In the first
parameter you enter the name of the library to search without specifying particular path on
disk.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Miscellaneous .ExistsLibrary(“kernel32.dll”)

10.11.5 FormCentering

This procedure is used to center a form created and screen visible. The parameter expects
the form as an object.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Miscellaneous .FormCentering(pobjForm)

10.11.6 GetExecutionPath

This procedure is used to obtain the full path of execution of our application. You get clean
path without file names, only folder structure.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

string lstrApplicationPath = Miscellaneous .GetExecutionPath();

10.11.7 GetListOfCountries

This procedure is used to obtain the full list of countries (English or Spanish). When you run
the procedure we will receive by reference receive two arrays of strings, one with the list of
countries and the other with a numeric code for each country, so if you need to load it in a

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 65

normal SwanCSharp combo, or to load in custom graphic interface "SwanCSharp_Controls"
combo-box.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

string [] lstrCountriesCodes = new string [0];
string [] lstrCountriesNames = new string [0];

Miscellaneous .GetListofCountries(ref lstrCountriesCodes, ref
lstrCountriesNames, InterfaceLanguage .English);

10.11.8 LoadDataInComboBox

This procedure allows to load all desired items in ComboBox, inserting each element with the
“Text” and “Value” parameters desired (something that does not allow directly the
ComboBox). This will create an array of string with the parameter "Text" for each item, and
another array of "String" with the parameter "Value" of each item. The third parameter is
passed by reference "ComboBox" we want to load.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

private void Form1_Load(object sender, EventArgs e)
{
 string [] lstrData = new string [3];
 string [] lstrValue = new string [3];

 lstrData[0] = "Option 1" ;
 lstrValue[0] = "1" ;

 lstrData[1] = "Option 2" ;
 lstrValue[1] = "2" ;

 lstrData[2] = "Option 3" ;
 lstrValue[2] = "3" ;

 Miscellaneous .LoadDataInComboBox(lstrData, lstrValue, ref cmbTest);
}

private void cmbTest_SelectedIndexChanged(object sender, EventArgs e)
{
 Miscellaneous .ShowInformationMessage("Form1 " , "You've selected: " +
cmbTest.Text + " -- value: " + cmbTest.SelectedValue.ToString());
}

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 66

If the ComboBox to load belongs to the class SwanCSharp.WindowBase, instead of using
this function (SwanCSharp.Miscellaneous.LoadDataInComboBox), we must use the parallel
SwanCSharp_Controls.Miscellaneous.LoadDataInComboBox function.

10.11.9 ObjectCentering

This procedure is used to center a control within its "parent object". The parameter expects
the control as an object.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Miscellaneous .ObjectCentering(pobjObject)

10.11.10 RestartComputer

The purpose of the procedure is to restart the operating system on the computer where the
application runs.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Miscellaneous .RestartComputer(10) // Ten seconds delay

10.11.11 ShowErrorMessage

The purpose of the procedure is to display a window with the error message, "OK" button,
and the appropriate icon. As parameters pass the desired title and the message for the
window.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Miscellaneous .ShowErrorMessage(pstrTitle, pstrMessage)

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 67

Important note: In the case of custom forms "SwanCSharp" created from the namespace
"SwanCSharp_Controls", you must use the class "WindowError" then existing in that
namespace instead of this function "ShowErrorMessage".

10.11.12 ShowInformationMessage

The purpose of the procedure is to display a window with the information message, "OK"
button, and the appropriate icon. As parameters pass the desired title and the message for
the window.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Miscellaneous .ShowInformationMessage(pstrTitle, pstrMessage)

Important note: In the case of custom forms "SwanCSharp" created from the namespace
"SwanCSharp_Controls", you must use the class "WindowInformation" then existing in that
namespace instead of this function "ShowInformationMessage".

10.11.13 ShowOKCancelQuestion

The purpose of the procedure is to show a window with a question and "OK" and "Cancel"
buttons, and the corresponding icon. As parameters pass the desired title and message for
the window for the window. Returns a "DialogResult" with the answer.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Miscellaneous .ShowOKCancelQuestion(pstrTitle, pstrMessage)

Important note: In the case of custom forms "SwanCSharp" created from the namespace
"SwanCSharp_Controls", you must use the class "WindowOKCancelQuestion" then existing
in that namespace instead of this function "ShowOKCancelQuestion".

10.11.14 ShowWarningMessage

The purpose of the procedure is to display a window with the warning message, "OK" button,
and the appropriate icon. As parameters pass the desired title and the message for the
window.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 68

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Miscellaneous .ShowWarningMessage(pstrTitle, pstrMessage)

Important note: In the case of custom forms "SwanCSharp" created from the namespace
"SwanCSharp_Controls", you must use the class "WindowWarning" then existing in that
namespace instead of this function "ShowWarningMessage".

10.11.15 ShowYesNoQuestion

The purpose of the procedure is to show a window with a question and "Yes" and "No"
buttons, and the corresponding icon. As parameters pass the desired title and message for
the window for the window. Returns a "DialogResult" with the answer.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Miscellaneous .ShowYesNoQuestion(pstrTitle, pstrMessage)

Important note: In the case of custom forms "SwanCSharp" created from the namespace
"SwanCSharp_Controls", you must use the class "WindowYesNoQuestion" then existing in
that namespace instead of this function "ShowYesNoQuestion".

10.11.16 ShutDownComputer

The purpose of the procedure is to shut down the computer where the application runs.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Miscellaneous .ShutDownComputer(10) // Ten seconds delay

10.11.17 TextSlicingInLines

The purpose of this function is to slicing received a long text in a "string" in the desired line
width. This function can be embedded long texts of paragraph in desired lines. To perform

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 69

the cutting of each line is calculated for each word length to avoid cutting through the middle,
passing the entire word to the next line.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Miscellaneous .TextSlicingInLines(“long text”, 80) // Each line will have 80
characters width

10.12 SwanCSharp.Network

The "SwanCSharp.Network" class allows us, using methods and functions, manage some
aspects of a computer network.

10.12.1 ChecklTCPPortIsOpen

In the "Network" class exists "CheckTCPPortIsOpen" function which tells us whether a TCP
port of a given address or domain name is open or not.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Boolean lblnResult = CheckTCPPortIsOpen("127.0.0.1" , 1500);

10.12.2 GetIPNetworkData

In the "Network" class exists "GetIPNetworkData" function that returns all the information
associated with the Ethernet card system. The function returns an array of object
"NetworkData" containing the caption, description, MACAddress, DHCPEnabled,
DHCPServer, DnsDomain, DNSHostName, IPAddress, IPSubnet, DefaultIPGateway,
DNSServer and SettingID fields.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 70

NetworkData [] lobjData = Network .GetIPNetworkData();

foreach (NetworkData lobjEthernet in lobjData)
{
 string lstrIPLan = lobjEthernet.IPAddress[0];
 string lstrMAC = lobjEthernet.MACAddress;
}

10.12.3 IsLocalIP

In the "Network" class exists "IsLocalIP" function that tells us whether a given IP is local or
not.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Boolean lblnIPLocal = Network .IsLocalIP(“255.255.255.255”);

10.12.4 IsValidIP

In the "Network" class exists "IsValidIP" function that tells us whether a given IP address has
the correct structure and is valid.

At the head of the reference procedure be added to the class:

using SwanCSharp;

A sample line of code can be:

Boolean lblnIPValid = Network .IsValidIP(“255.255.255.255”);

10.13 SwanCSharp.Reporting

The namespace "SwanCSharp.Reporting" allows us to generate data reports for later
viewing and / or printing. This class incorporates a viewing window itself from which to print
the report.

Was decide to use HTML files for reports by its universality, can be viewed on any system,
because of the small space they occupy, and flexibility.

At the head of the reference procedure be added to the class:

using SwanCSharp.Reporting;

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 71

A sample line of code can be:

DataConnectionAccess lobjConnection = new
DataConnectionAccess ("Database.mdb" , "" , "" , DatabaseManager .Access);
DataTable ldatData = lobjConnection.SQLSelectExecute("SELECT * FROM
Staff");

lobjConnection.CloseConnection();

GenerateHTMLReport lobjGenerate = new GenerateHTMLReport (ldatData,
lobjReportObjects, "Report" , "" , "Test of Report" , "SwanCSharp.png" , "" ,
SwanCSharp.Reporting. InterfaceLanguage .English,
SwanCSharp.Reporting. ReportViewWindowsSize .High, true , true);

The above code will generate a report using data from ldatData, and the definition of the
object has passed "ReportObjects". The report will be saved in the specified path. The
reporting parameters are:

* DataTable. - The data used to generate the report.
* ReportObjects. - The object constructed with the basic structure of the report that will allow
its construction.
* Filename. - The name of the file you will when stored on disk. The file name and extension
will be passed without SwanCSharp will add the extension. "Html".
* File path. - The disk path where it will create the html file.
* Report title. - The title is going to have the report.
* Filename logo. - You can pass the name of the image file to be used as a logo to include in
the report.
* Logo file path. - The disk path where the image file of the logo.
* Interface language screen. - We choose the language in which to display the report output.
* Size of the display window. - You can choose between Small, Medium, High.
* Date of creation of report. - If you pass "false" in this parameter will be printed at the end of
the report the date and time of creation.
* Viewing the report. - If you pass "false" in this parameter, once generated in the report will
show a preview screen automatically.

The report generator was created with the idea of displaying data whose origin is a
"DataTable" that I could get from any external form, or using the class of SwanCSharp
DataAcess (as seen in the example above). Although the report will in many sections show a
text "constant". The idea of "Reporting" is to generate reports specific facts of a DataTable.

To create a report is essential to use the class "ReportObjects" which is the class that will
allow us to customize the generation, allowing constant data entry, set a particular text in
bold or underline, set alignment of text or information, place a title bar, or place the detail
where to display the data.

The first step in designing a report with "Reporting" is split in specific rows report, for
example, a standard report can be divided into three general lines, a header row, where
general data will show a detail row where to display more specific data, and a row at the
bottom of the document output. In this document we show an example of how to create a
report that will have a front row with more general data and a second row with the detail of
the specific information.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 72

To create each particular row can use three different classes: ReportRowStandard, to create
a single row with general data (the data you wish), that equals ReportRowDoubleBox above
only allows us to chop the line into two distinct parts and letting you configure the width of
each of the two parts, and finally ReportRowDetail, which is used to create a wider detail.

Let's show a particular example. We want to create a report for each record in your database
(Table staff) we show a first row divided into two parts, the first to show only the code of the
employee, and the second to show the rest of personal data. Then there will be a second row
with the detail of the other fields.
For the first row we choose an object "ReportRowDoubleBox". We create the object as
follows.

ReportRowData [] lobjReportRowDataFirstBox = new ReportRowData [2];

lobjReportRowDataFirstBox[0].DataTableFieldName = "" ;
lobjReportRowDataFirstBox[0].BoldDataField = false ;
lobjReportRowDataFirstBox[0].UnderlineDataField = false ;
lobjReportRowDataFirstBox[0].PreviousConstantText = "Staff Data -- " ;
lobjReportRowDataFirstBox[0].BoldPreviousConstant = false ;
lobjReportRowDataFirstBox[0].UnderlinePreviousConst ant = false ;
lobjReportRowDataFirstBox[0].LaterConstantText = "" ;
lobjReportRowDataFirstBox[0].BoldLaterConstant = false ;
lobjReportRowDataFirstBox[0].UnderlineLaterConstant = false ;

lobjReportRowDataFirstBox[1].DataTableFieldName = "IDPerson" ;
lobjReportRowDataFirstBox[1].BoldDataField = true ;
lobjReportRowDataFirstBox[1].UnderlineDataField = false ;
lobjReportRowDataFirstBox[1].PreviousConstantText = "Person ID: " ;
lobjReportRowDataFirstBox[1].BoldPreviousConstant = false ;
lobjReportRowDataFirstBox[1].UnderlinePreviousConst ant = false ;
lobjReportRowDataFirstBox[1].LaterConstantText = "" ;
lobjReportRowDataFirstBox[1].BoldLaterConstant = false ;
lobjReportRowDataFirstBox[1].UnderlineLaterConstant = false ;

ReportRowData [] lobjReportRowDataSecondBox = new ReportRowData [2];

lobjReportRowDataSecondBox[0].DataTableFieldName = "Name" ;
lobjReportRowDataSecondBox[0].BoldDataField = true ;
lobjReportRowDataSecondBox[0].UnderlineDataField = false ;
lobjReportRowDataSecondBox[0].PreviousConstantText = "Name: " ;
lobjReportRowDataSecondBox[0].BoldPreviousConstant = false ;
lobjReportRowDataSecondBox[0].UnderlinePreviousCons tant = false ;
lobjReportRowDataSecondBox[0].LaterConstantText = " -- " ;
lobjReportRowDataSecondBox[0].BoldLaterConstant = false ;
lobjReportRowDataSecondBox[0].UnderlineLaterConstan t = false ;

lobjReportRowDataSecondBox[1].DataTableFieldName = "LastName" ;
lobjReportRowDataSecondBox[1].BoldDataField = true ;
lobjReportRowDataSecondBox[1].UnderlineDataField = false ;
lobjReportRowDataSecondBox[1].PreviousConstantText = "Last Name: " ;
lobjReportRowDataSecondBox[1].BoldPreviousConstant = false ;
lobjReportRowDataSecondBox[1].UnderlinePreviousCons tant = false ;
lobjReportRowDataSecondBox[1].LaterConstantText = "" ;
lobjReportRowDataSecondBox[1].BoldLaterConstant = false ;
lobjReportRowDataSecondBox[1].UnderlineLaterConstan t = false ;

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 73

In the above example we can see how two objects "ReportRowData" (which is the basic
object of Reporting), one for the first part of the row, and one for the second part of the line.
In each part we can create an array with many elements want to display data in our case
shows two data for the first half and two data for the second part (may be different in each
part).

Once created the two parties are going to merge to create the entire row by
ReportRowDoubleBox object:

ReportRowDoubleBox lobjReportRowDoubleBox;
lobjReportRowDoubleBox.RowDataFirstBox = lobjReport RowDataFirstBox;
lobjReportRowDoubleBox.RowAlingmentFirstBox = ReportRowAlignment .Center;
lobjReportRowDoubleBox.ShowBorderFirstBox = true ;
lobjReportRowDoubleBox.CellWidthFirstBox = 30;
lobjReportRowDoubleBox.RowDataSecondBox = lobjRepor tRowDataSecondBox;
lobjReportRowDoubleBox.RowAlingmentSecondBox = ReportRowAlignment .Left;
lobjReportRowDoubleBox.ShowBorderSecondBox = true ;

In ReportRowDoubleBox object can be seen as we pass the object of each party, and we
can move separately for each part if you show the border, or text alignment. This object is
also determines the width that will be the first part of the box in this case is 30, which means
that the width of the first part is 30%, therefore the width of the second part will be 70%
automatically.

When this object is passed to the generator, which will be created in the report will be:

The next step is to create the detail row, and this class is used as base ReportRowDetail
using each data the same class "ReportRowData" used in the previous case:

ReportRowData [] lobjReportRowDetailData = new ReportRowData [2];

lobjReportRowDetailData[0].DataTableFieldName = "Comments" ;
lobjReportRowDetailData[0].BoldDataField = false ;
lobjReportRowDetailData[0].UnderlineDataField = false ;
lobjReportRowDetailData[0].PreviousConstantText = "Comments Location: " ;
lobjReportRowDetailData[0].BoldPreviousConstant = true ;
lobjReportRowDetailData[0].UnderlinePreviousConstan t = true ;
lobjReportRowDetailData[0].LaterConstantText = "" ;
lobjReportRowDetailData[0].BoldLaterConstant = false ;
lobjReportRowDetailData[0].UnderlineLaterConstant = false ;

lobjReportRowDetailData[1].DataTableFieldName = "Comments2" ;
lobjReportRowDetailData[1].BoldDataField = false ;
lobjReportRowDetailData[1].UnderlineDataField = false ;
lobjReportRowDetailData[1].PreviousConstantText = "General Comments: " ;
lobjReportRowDetailData[1].BoldPreviousConstant = true ;
lobjReportRowDetailData[1].UnderlinePreviousConstan t = true ;
lobjReportRowDetailData[1].LaterConstantText = "" ;
lobjReportRowDetailData[1].BoldLaterConstant = false ;
lobjReportRowDetailData[1].UnderlineLaterConstant = false ;

As you can see in the above code we will show two fields in the detail; now create the
ReportRowDetail object:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 74

ReportRowDetail lobjReportRowDetail;
lobjReportRowDetail.RowData = lobjReportRowDetailDa ta;
lobjReportRowDetail.ShowBorder = true ;
lobjReportRowDetail.RowAlingment = ReportRowAlignment .Left;
lobjReportRowDetail.RowDetailOrientation =
ReportDetailOrientation .Vertical;

For this purpose we have chosen detail portrait orientation, text alignment left and show the
border. When this object is passed to the generator, which will be created in the report will
be:

In short, from the base class ReportRowData have created a report which is divided into a
first ReportRowDoubleBox object and a second object ReportRowDetail.
But to generate the report must pass a ReportObjects. The next step is to create
ReportObjects from each of the two objects "Row" (you can check that we can create as
many objects within ReportObjects row as we wish):

ReportObjects lobjReportObjects;
lobjReportObjects.ReportRows = new object [2];
lobjReportObjects.ReportRows[0] = lobjReportRowDoub leBox;
lobjReportObjects.ReportRows[1] = lobjReportRowDeta il;

The last step is to call, passing the object ReportObjects, the class that will create the HTML
file to view the report. This file can be viewed in any web browser:

GenerateHTMLReport lobjGenerate = new GenerateHTMLReport (ldatData,
lobjReportObjects, "Report" , "" , "Test of Report II" , "SwanCSharp.png" , "" ,
SwanCSharp.Reporting. InterfaceLanguage .English,
SwanCSharp.Reporting. ReportViewWindowsSize .High, true , true);

The class "GenerateHTMLReport" create report "Report.html" and display it on screen
automatically, showing the following window:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 75

In the examples that come with the lib ("Samples" folder that is inside SwanCSharp.zip
downloaded ZIP file), exists a project with examples of "Reporting" that is named "Report".

10.13.1 ReportHTMLViewer

ReportHTMLViewer class allows us to show in a window any existing HTML report without
rebuilding it. It is necessary to report the following parameters:

* Filename. - The name of the file you will when stored on disk.
* File path. - The disk path of the file.
* Title window. - The title to be displayed in the window.
* Group title. - The title to display in control group.
* Size of the display window. - You can choose between Small, Medium, High.
* Interface language screen. - We choose the language in which to display the report output.

At the head of the reference procedure be added to the class:

using SwanCSharp.Reporting;

A sample line of code can be:

ReportViewer .ReportHTMLViewer("report.html" , "" , "Report Saved" , " Report" ,
ReportViewWindowSize .Medium,
SwanCSharp.Reporting. InterfaceLanguage .Spanish);

Important note: In the case of custom forms "SwanCSharp" created from the namespace
"SwanCSharp_Controls", you must use the class "WindowReportView" then existing in that
namespace instead of this function "ReportHTMLViewer".

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 76

10.14 SwanCSharp.SNTP

The class "SwanCSharp.SNTP" allows us to integrate our applications an upgrader date and
system time. There are many free time servers (NTP Server, Network Time Protocol Server)
that allow us to get a date and time updated and certified. With a few simple lines of code we
can make our applications synchronize (or update) the date and time by connecting to a NTP
server.

At the head of the reference procedure be added to the class:

using SwanCSharp.SNTP;

A sample line of code can be:

SNTPClient lobjSNTPClient = new SNTPClient ("IP or DNS of NTP Server");
lobjSNTPClient.Connect(5);

The class constructor expects the DNS or IP address of the NTP server that we will connect.
The method "Connect" expects to receive a parameter with time out interval (in seconds). By
running these two lines of code our application will connect to the NTP server, pick the
current date and time, and modify the system clock with the new date and time.

10.15 SwanCSharp.Socket

The class Socket incorporates all the features needed to manage sockets in applications
developed in. NET Framework. The class is divided into four modules, one to run as a server
to receive all communications, and a second module as a client to send all commands to the
server. Then there is a third module to enable a files server and a fourth module to enable a
client files.

The class allows to manage develop systems Sockets File Transfer, Chat and
communications applications, send / receive images via TCP, database applications using
client / server communication client machine to server machine to perform configuration
changes one core of a process computer, etc., can develop thousands of useful applications
easily.

For example, you can develop an application to download files hosted on a server with
requests from multiple clients, without requiring a server and an FTP client or SSH installed
on each machine, without relying on a defined command structure, and can customize all
commands.

Can also be used to house a data recording engine is supported on a central DB to server
mode and record and request information from each customer, this prevents us develop a
website that does not have the flexibility of an application Windows forms.

The communication between client and server is encrypted SwanCSharp socket for safety
and operates by transmitting the whole "Command" and "Data" so the server socket can not

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 77

be used with another client socket stranger to this library, and the client can not be used in
communication with a server other than the socket of this library.

This class can be used both Socket communication between client and server via LAN and
via WAN (Internet).

10.15.1 FileClient

FileClient class lets you create a client socket to send or receive files to FileServer class.

At the head of the reference procedure be added to the class:

using SwanCSharp.Sockets;

To create the client object be used the commands:

FileClient lobjFileClient = new FileClient ();

lobjFileClient.TransmissionResult += new
FileClient . TransmissionResultEventHandler (lobjFileClient_TransmissionResult
);

To upload or download files from the server are used:

lobjFileClient.DownloadFile("test.txt" , "" , "192.168.0.15" , 18000);
lobjFileClient.UploadFile("test.txt" , "" , "192.168.0.15" , 18000);

After sending the message, the event TransmissionResultEventHandler jumps when a
server response to our command and the requested transfer. The event we have signed in
the second line of the client connection, so we need to manage the event by adding the
function:

private static void lobjFileClient_TransmissionResult(string pstrFileName,
Boolean pblnDownloaded, Boolean pblnTransmissionResult)
{

}

Within the previous function we receive the file name in the transaction, if the transaction is
"Download" (true) or "Upload" (false), and the result of the transaction (true correct false
error). For example:

if (pblnTransmissionResult)
{
 if (pblnDownloaded)
 {
 Console .WriteLine("The file '" + pstrFileName + "' is downloaded
successfully");
 }
 else
 {

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 78

 Console .WriteLine("The file '" + pstrFileName + "' is uploaded
successfully");
 }
}
else
{
 if (pblnDownloaded)
 {
 Console .WriteLine("The file '" + pstrFileName + "' is downloaded
successfully");
 }
 else
 {
 Console .WriteLine("The file '" + pstrFileName + "' is uploaded
successfully");
 }

}

In the examples that come to the library ("Samples" folder that is inside the ZIP file
downloaded SwanCSharp.zip) exists an example of a client project files that operates in
combination sample project file server.

10.15.2 FileServer

FileServer class lets you create a server socket on a computer to be used to store files of
any type (file server). The file server expects to receive orders from file client to upload or
download a given file. FileServer class should run against one or more client computers that
operate using FileClient class, so there is a direct relationship between classes FileClient
and FileServer. Both classes allow us to transfer files without having to operate using
standard protocols FTP, SSH, etc. FileServer and FileClient classes may be combined with
SocketServer and SocketClient classes, to send a TCP channel to execute the commands,
and a second channel to transfer files, so that the slower communication files will not
interfere with communication faster commands and data. The maximum size of each file to
be sent should not exceed 20 MB.

At the head of the reference procedure be added to the class:

using SwanCSharp.Sockets;

To create the server object and set it to listen commands, are used:

private static FileServer mobjServer;

mobjServer = new FileServer ("192.168.0.15" , 18000, "" , false);

It is reported as the first parameter is the IP that the computer on which to run the server,
passing as the second parameter desired TCP port for communication between client and
server. The third parameter is used to specify if a file to be downloaded must be deleted from
the server. After running the above lines, the application will remain in listening TCP port
chosen.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 79

When a client connects to the file server, run the event
"OpenClientConnectionEventHandler" therefore we declare the event and PROCEDURE
where we will process:

mobjServer.OpenClientConnection += new
FileServer . OpenClientConnectionEventHandler (mobjServer_OpenClientConnection
);

Procedure which is to be processed:

private static void mobjServer_OpenClientConnection(string pstrIP, Int32
pintTCPPort)
{
 Console .WriteLine("Connection accepted with IP: " + pstrIP + " - TCP
Port: " + pintTCPPort.ToString());

}

Each time a client sends data through the event "ReceiveDataEventHandler" will receive five
parameters: Process File, Client IP, TCP Client, a Boolean value indicating whether the file is
downloaded (true) or if the file is uploaded (false), and the communication channel).

To subscribe to the event runs:

mobjServer.ReceiveData += new
FileServer . ReceiveDataEventHandler (mobjServer_ReceiveData);

To manage the client received frame use:

private static void mobjServer_ReceiveData(string pstrFile, string pstrIP,
Int32 pintTCPPort, Boolean pblnDownload, object pobjChannel)
{
 if (pblnDownload)
 {
 Console .WriteLine("Requested download file " + pstrFile + " from
IP: " + pstrIP + " - TCP Port: " + pintTCPPort.ToString());
 }
 else
 {
 Console .WriteLine("Requested upload file " + pstrFile + " from IP:
" + pstrIP + " - TCP Port: " + pintTCPPort.ToString());
 }

}

In the examples that come to the library ("Samples" folder that is inside SwanCSharp.zip
downloaded ZIP file) there is a project management developed example of a file server.

With the simple lines of code described in this section have a file server that transmits
operational information maximum speed advantage that allows us communication, either on
a local network LAN and WAN.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 80

10.15.3 SocketClient

SocketClient class lets you create a client socket to send commands, data, and information
to the class SocketServer.

At the head of the reference procedure be added to the class:

using SwanCSharp.Sockets;

To create the client object are used the commands:

SocketClient lobjClient = new SocketClient ("192.168.2.2" , 5900);

lobjClient.ReceiveData+= new
SocketClient . ReceiveDataEventHandler (lobjClient_ReceiveData);

To send a command + data to the server is used:

lobjClient.SendData("01" , "abcdefg");

To close the connection is used:

lobjClient.CloseConnection();

To send a command and data connection is recommended to create the client, send the
command and data, receive the reply, and then close the connection. Socket Server
supports multiple clients connected, but not convenient to use a single open connection to
send multiple commands, you should create the connection and send the command to close
each of the items.

After sending the message, the event ReceiveDataEventHandler starts when a server
response to our command and data sent. The event we have signed in the second line of the
client connection, so we need to manage the event by adding the function:

private static void lobjClient_ReceiveData(string pstrCommand, string
pstrData)

{

}

Within the above function to pick up the answer to Server command sent along with the data
you send us, and make the processes that may be required. For example:

if (pstrCommand == "FF")
{
 Console .WriteLine("Command executed successfully");
}
else if (pstrCommand == "F0")
{
 Console .WriteLine("Command NOT executed successfully");

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 81

}

In the examples that come to the library ("Samples" folder that is inside the ZIP file
downloaded SwanCSharp.zip) an example of a client project that operates in combination
Socket project SocketServer example.

10.15.4 SocketServer

The SocketServer class lets you create a socket server to receive commands, data, and
information SocketClient class.

At the head of the reference procedure be added to the class:

using SwanCSharp.Sockets;

To create the server object and set it to listen commands, are used:

private static SocketServer mobjServer;
mobjServer = new SocketServer ("192.168.2.2" , 8500);

Passing as the first parameter is the IP that the computer on which to run the server, passing
as the second parameter the desired TCP port for communication between client and server.
After running the above lines, the application will remain in listening TCP port chosen.

When a client socket connects to the server, execute the event
"OpenClientConnectionEventHandler" therefore we declare the event and procedure where
we will process:

mobjServer.OpenClientConnection += new
SocketServer . OpenClientConnectionEventHandler (mobjServer_OpenClientConnecti
on);

Procedure which is to be processed:

private static void mobjServer_OpenClientConnection(string pstrIP, Int32
pintTCPPort)
{
 Console .WriteLine("Connection accepted with IP: " + pstrIP + " - TCP
Port: " + pintTCPPort.ToString());

}

Each time a client sends data through the event "ReceiveDataEventHandler" will be received
five parameters: Command, Data, Client IP, TCP Client, and the communication channel).

The command is a two-character string that matches a hexadecimal value ranging from 00 to
FF, allowing 256 receiving different commands. The second parameter is receiving the data
(a string with no limit). The third and fourth parameters receive the client IP and TCP port

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 82

information we received. The last parameter is used to send a confirmation signal or
customer error.

To subscribe to the event executes:

mobjServer.ReceiveData += new
SocketServer . ReceiveDataEventHandler (mobjServer_ReceiveData);

To manage the frame client received use:

private static void mobjServer_ReceiveData(string pstrCommand, string
pstrData, string pstrIP, Int32 pintTCPPort, object pobjChannel)

{

}

In the above function, when you want to return a message to the client to indicate that the
command is right or wrong, for example, can send a command "FF" when it's right, and a
command "F0" when it is wrong, for that we use the pobjChannel parameter received:

mobjServer.SendResponse("FF" , "Command '01' executed successfully" ,
pobjChannel);

mobjServer.SendResponse("F0" , "Error: The command does not exist" ,
pobjChannel);

In the examples of this library ("Samples" folder that is inside SwanCSharp.zip downloaded
ZIP file) commands operate with "01", "02" and "03" for three different processes, and use
the command "FF" to confirm success and "F0" to confirm error. But the number of
commands to use, and which commands you choose is decision of each developer, should
always be a two-character string that matches a valid hexadecimal number, but each
developer can choose which you want.

With the simple lines of code described in this section will have a socket server running and
encrypted communication, certifying that the recipient gets properly controlled by the
message CRC. Depending on the imagination can develop amazing apps with this socket.

10.16 SwanCSharp.Users

The namespace "Users" allows us to manage everything related to users and profiles. With
the classes defined in this namespace can integrate into your applications with few lines of
code, and easily, complete management of users.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 83

10.16.1 UserManagementSQLServer, UserManagementOracle,

UserManagementFirebird, UserManagementMySQL y

UserManagementAccess

The class constructor "UserManagement" need to use a specific data table either SQL
Server, Oracle, Firebird, MySQL, or Access (one class for each database manager). The
purpose of this class is to incorporate an application complete user management (including
management windows). So every time you build the object "UserManagement", this class will
check our database tables if exist "Profiles" and "Users" and if they have the required fields.
Otherwise the first thing it will automatically create all the necessary structure in our
database chosen (a process that only runs the first time and without developer intervention).

In the case that the chosen data source is SQL Server, the data from the table "Users" will
be encrypted for class "Management" so that no externally to our developments can access
user data and passwords. Therefore, this class uses internally security encryption.

In the case that the chosen database is Access, the data is not encrypted, but users are
recommended to protect the database with a password (from the Microsoft Access Security
option).

Data is not encrypted for Oracle, MySQL, and Firebird, therefore we recommend that you
enable SQL authentication that allow both database managers.

At the head of the reference procedure be added to the class:

using SwanCSharp.Users;

When building the UserManagement class object must remember that in the database
passed are created the tables "Users" and "Profiles". The profiles will be created are: super
user, administrator and standard user. With these three profiles can play in our
developments to set permissions.
Regarding the table "Users" always creates a default user "superuser" profile, with which we
can begin to create our desired users. The user base is created is "superadmin" and
password is "sadmin".

It is also important to highlight that the classes "UserManagement" will be used throughout
the development of our application and therefore it is recommended to create the object
using a global variable so that the current user's data, and calls to management functions ,
are accessible from anywhere in the application. To create object "UserManagement" be
added:

public UserManagementSQLServer gobjUserManage = null ;

private void Form1_Load(object sender, EventArgs e)
{

 gobjUserManage = new UserManagementSQLServer("PC-NAME\\SQL_INSTANCE" ,
"Database");

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 84

}

To create the object from Oracle, Firebird, MySQL, or Access, exists
"UserManagementOracle", "UserManagementFirebird", “UserManagementMySQL”, and
"UserManagementAccess" classes.

10.16.1.1 ShowLoginWindow

The logical thing would when running the application will display a window "login" to verify a
correct user entry. So before opening main form "Form1" we call the window "Login". Then
the source code would look like this:

public UserManagementSQLServer gobjUserManage = null ;

private void Form1_Load(object sender, EventArgs e)
{

 gobjUserManage = new UserManagementSQLServer("PC-NAME\\SQL_INSTANCE" ,
"Database");

 gobjUserManage.ShowLoginWindow(InterfaceLanguage .English);
 if (!gobjUserManage.LoggedIn)
 {
 MessageBox .Show("Login incorrect." , "Test" , MessageBoxButtons .OK,
MessageBoxIcon .Error);
 this .Dispose();

 }

}

Windows forms of this class can be displayed in two languages through enumerated
InterfaceLanguage, Spanish and English. The above code will display a login window, if the
user is not correct, the application will close. From the creation of the object "User
Management" have a global variable "gobjUserManage" available throughout the application
that has properties with the values of the user who accessed via login (UserName,
UserPassword, UserCompleteName, Profile).

Once we have a public variable in order "UserManagement" can control, for example,
options on a C # MenuStrip are enabled by the active user profile. For example, by the
following source code:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 85

private void MenuManage()
{
 // Standard User
 if (gobjUserManage.Profile == UserProfiles .StandardUser)
 {
 mnuSave.Enabled = false ;
 mnuSetup.Enabled = false ;
 mnuDelete.Enabled = false ;
 }
 // Administrator
 else if (gobjUserManage.Profile == UserProfiles .Administrator)
 {
 mnuDelete.Enabled = false ;
 mnuAddUser.Enabled = false ;
 }

}

If the active user "logged in" has the profile of "Super User", has access to all menu options.
If the user has the profile "administrator" will not have access to the "Delete" and to the "Add
User". If the user has a profile "StandardUser" can not access the menus "Save", "Setup"
and "Delete". The "MenuManage" runs just after confirming that access login is correct and
the permissions will be set as your profile menu.

Important note: In the case of custom forms "SwanCSharp" created from the namespace
"SwanCSharp_Controls", you must use the class "WindowLoginUser" then existing in that
namespace instead of this function "ShowLoginWindow".

10.16.1.2 ShowUserAddWindow

In addition to the "login" window exists "Add User" window will allow us to add an option to
register new users. An example of the window called "Add User" is:

private void mnuAddUser_Click(object sender, EventArgs e)
{
 gobjUserManage.ShowUserAddWindow(gobjUserManage. Profile,
InterfaceLanguage .English);

}

As the first parameter is passed the current user's profile at every instant, and the second
parameter is passed the language of the user interface. An example screen is:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 86

This screen is never going to allow a user profile "StandarUser" create another user. A
profiled user "Administrator" only allows you to create another user "Administrator" or another
user "StandarUser". For the user "SuperAdmin" no restrictions whatsoever.

Important note: In the case of custom forms "SwanCSharp" created from the namespace
"SwanCSharp_Controls", you must use the class "WindowAddUser" then existing in that
namespace instead of this function "ShowUserAddWindow".

10.16.1.3 ShowUserPasswordChangeWindow

The window "Password Change" will allow us to change the password of the current user
that is logged in at the time. This method opens a window where you will enter the current
password, and will enter the new password. Pressing "OK" the password will be changed as
long as the current password entered matches.

To call the password change window write the following code:

try
{
 gobjUserManage.ShowUserPasswordChangeWindow(gob jUserManage.UserName,
InterfaceLanguage .English);
}
catch (Exception ex)
{
 MessageBox .Show(ex.Message);

}

As the first parameter is passed the active user at every moment, and the second parameter
is passed as the language of the user interface. An example screen is:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 87

Important note: In the case of custom forms "SwanCSharp" created from the namespace
"SwanCSharp_Controls", you must use the class "WindowPasswordUser" then existing in
that namespace instead of this function "ShowUserPasswordChangeWindow".

10.16.1.4 ShowUserRemoveWindow

The window "Remove User" will allow us to remove users from the database. To remove a
user only need to enter his username. It is important to know that there are some rules to
delete users: If the current user is "SuperUser" can delete any other user whatever their
profile, if the current user's profile is "Administrator", can delete only "Standard User". The
"Standard User" does not have permission to delete any other user whatever their profile.

To invoke the user deleted window you write the following code:

try
{
 gobjUserManage.ShowUserRemoveWindow(gobjUserMana ge.Profile,
InterfaceLanguage .English);
}
catch (Exception ex)
{
 MessageBox .Show(ex.Message);

}

As the first parameter is passed the current user's profile at every instant, and the second
parameter is passed as the language of the user interface. An example screen is:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 88

Important note: In the case of custom forms "SwanCSharp" created from the namespace
"SwanCSharp_Controls", you must use the class "WindowRemoveUser" then existing in that
namespace instead of this function "ShowUserRemoveWindow".

10.16.1.5 ChangeUserPassword

With "ChangeUserPassword" function we can change the password of an active user from
source code.

ChangeUserPassword(gobjUserManage.UserName,”Current Password”, “New
password”)

10.16.1.6 IsValidUser

With "IsValidUser" we can, from source code (the login screen and automatically used), to
check if a given user is valid. This function is used to check if a username and password
exist in the users table. In addition to returning "true" if exists, and "false" if it does not exist,
returns by reference the user's full name and the profile of the user (if exists).

if (IsValidUser(pstrUser, pstrUserPassword, ref pstrUserCompleteName, ref
pintProfile))
{
 lblnLoggedIn = true ;
}
else
{
 lblnLoggedIn = false ;

}

10.16.1.7 ExistsUserName

Given a username, the “ExistsUserName” function checks if the username exists in the table
"Users". This check is done automatically in the window "Add User", but by source code we
may want to check if a user exists or not.

if (ExistsUserName(pstrUser))
{
 throw new ApplicationException ("Can not create the user name because
already exists");
}
else
{
 UserAdd(mstrUser, mstrUserPassword, mstrUserCom pleteName,
UserProfiles .UserProfile);
}

10.16.1.8 ProfileUserName

The "ProfileUserName" allows us to obtain a user's profile according to the parameter
passed.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 89

UserProfiles lenuProfile = ProfileUserName(lstrUser);

10.16.1.9 UserAdd

The "useradd" function lets you create a new user via source code, without using the user
creation window.

UserAdd(pstrUser, pstrUserPassword, pstrUserComplet eName,
UserProfiles .UserProfile);

10.16.1.10 UserRemove

The "UserRemove" function allows us to remove a user determined by parameter. For the
deletion is executed will have to meet deletion standards specified in this document under
"UserManagement".

UserRemove(string pstrUserName, UserProfiles penuProfileActive,
UserProfiles penuProfileToDelete);

10.17 SwanCSharp.Validations

It incorporates all the functions needed for rapid validation of data in applications developed
in. NET Framework.

10.17.1 FileNameWithPathValidate

The purpose of this function is to validate if a string value passed parameter is a valid full
path of a file. The function performs the following validations:

• Verify that the file exists. Otherwise it returns false.

• Check that the definition of the file name includes the path. Otherwise it returns false.

• Extract filename and checks the path exists. Otherwise it returns false.

In the header of the referenced method be added the class:

using SwanCSharp;

At the desired location to execute the validation be added:

string lstrResult = "";
if (Validations .FileNameWithPathValidate(pstrFileNameWithPath))
{
 strResult = "The path and the filename are valid ";
}
else

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 90

{
 strResult = "The path and the filename are NOT v alid";
}

10.17.2 HexadecimalInString

The purpose of this function is to validate whether a string is a valid hexadecimal string.

In the header of the referenced method be added the class:

using SwanCSharp;

At the desired location to execute the validation be added:

if (! Validations .HexadecimalInString(pstrCommand))
{
 throw new ApplicationException ("The Command parameter must be a valid
hexadecimal string");
}

10.17.3 HigherNumber

The purpose of this function is to return the greatest number of two numbers passed as
parameter.

In the header of the referenced method be added the class:

using SwanCSharp;

At the desired location to execute the validation be added:

int lintHighNumber = Validations .HigherNumber(10,15)

10.17.4 IsNumeric

The purpose of this function is to check if a string (or char) is given a numerical value or not.
The function has four overloads to return from a single parameter to three parameters and
can pass the number as a string, a char, and or can specify what the decimal point or the
number of decimal places.

In the header of the referenced method be added the class:

using SwanCSharp;

At the desired location to execute the validation be added:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 91

string lstrNumber = “215.67”;
Boolean lblnIsNumeric = Validations .IsNumeric(lstrNumber, “.”, 2)

10.17.5 IsValidDate

The purpose of this function is to check whether a received date (in data type "string") is a
valid date in calendar and format.

In the header of the referenced method be added the class:

using SwanCSharp;

A sample code can be:

string lstrDate = "20/02/2013" ;
if (IsValidDate(lstrDate))
{
 Console .WriteLine("The date is valid");
}
else
{
 Console .WriteLine("The date is NOT valid");
}

10.17.6 IsValidEmail

The purpose of this function is to check if a given email has the correct format for an email
address.

In the header of the referenced method be added the class:

using SwanCSharp;

A sample code can be:

string lstrEmail = "test@swancsharp.com" ;
if (IsValidEmail(lstrEmail))
{
 Console .WriteLine("The email is valid");
}
 else
{
 Console .WriteLine("The email is NOT valid");
}

10.17.7 LowerNumber

The purpose of this function is to return the smallest number of two numbers passed as
parameter.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 92

In the header of the referenced method be added the class:

using SwanCSharp;

At the desired location to execute the validation be added:

int lintLowerNumber = Validations .LowerNumber(10,15);

10.18 SwanCSharp.Video

The "Video" namespace allows us to easily obtain one video stream generated by an IP
camera with HTTP support. The IP cameras that can get video stream via http.

In the header of the referenced method be added the class:

using SwanCSharp.Video;

The "Video" namespace contains a main class called “Streaming” with two constructors: one
only need to specify the http address of the CGI which returns every JPEG; the second
addition to the http address allows us to customize the interval (in milliseconds) with which
we want to download each image frame.

For example, if we pass only the http address, each frame is downloaded every 10
milliseconds, and the constructor would be:

Streaming mobjStreaming = new Streaming ("http://192.168.x.x /axis-
cgi/jpg/image.cgi");

In this case we are setting the http address for downloading each frame of AXIS camera;
each camera manufacturer will have its own http address.

If we want to customize the download time of each frame, for example to download a frame
every 100 milliseconds (10 fps), would be:

Streaming mobjStreaming = new Streaming ("http://192.168.x.x /axis-
cgi/jpg/image.cgi" , 100);

If the camera has set username and password authentication, add the following:

mobjStreaming.User = "user" ;
mobjStreaming.Password = "password" ;

The last step is to set the event will jump with each new frame, and start capturing frames:

mobjStreaming.NewFrame += new
Streaming . NewFrameEventHandler (mobjStreaming_NewFrame);

mobjStreaming.StartCapture();

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 93

We can only create the event method "newFrame" which jumps to each gathered frame
arriving by parameter "Bitmap" object:

private void mobjStreaming_NewFrame(Bitmap pobjFotograma)
{
 /*
 * Code for "pobjFotograma" image management h ere
 */
}

If at any time you want to stop capturing frames, you can use the following command:

mobjStreaming.StopCapture();

11. FUNCTIONS USER REFERENCE (SwanCSharp_Controls)

Here will describe the reference of use of each of the features incorporated into the library in
SwanCSharp_Controls namespace. References are grouped by the classes to which they
belong in the logical order of development.

11.1 SwanCSharp_Controls.WindowBase

The class "WindowBase" consists of an heritable object that allows us, in our developments,
breaking the windows GUI that provides the operating system, and operate with another
different interface, extending the limited customization options in a standard development.

For example, in a standard development you can hide the button separately to minimize and
maximize, or we can disable all buttons (ControlBox) at once, but we can not hide only close
button, and if we hide all (ControlBox), not may include a graphical icon in the title bar of the
window. With SwanCSharp WindowBase class can hide each button separately, and
includes the icon to the window anyway, we even can change the order of buttons close,
maximize / restore, and minimize.

We can also change the colour text of the title bar, something that can not be done on
standard interface and can block the possibility of move the window (Moveable)
characteristic removed since Visual Basic 6.0.

The WindowBase class enables the possibility to include background transparency for
windows and a lot of functions that are passed following paragraphs describe.

The "SwanCSharp_Controls" graphical interface includes six different themes to choose;
each item is based on a specific central color (black, blue, gold, gray, green, and red).

To use the namespace "SwanCSharp_Controls" must be installed on the computer version
3.0 of .Net Framework or higher.

Respect to the development IDE, can be used without problems on Visual Studio 2008 or
higher. Respect to Visual Studio 2005 will have to install the module "Visual Studio 2005
extensions for. NET Framework 3.0 (WPF)", which can be downloaded free from Internet.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 94

Without the installation of this module can not be developed using the namespace
SwanCSharp _Controls.

The examples shown in this document are executed under the Visual Studio 2005 with
"Visual Studio 2005 extensions for. NET Framework 3.0 (WPF)" installed.

To display general operation of the WindowBase class we created a sample project called
"SwanWindow" that shows most important graphical features of this class. Running the
sample application will ask for a username and password, you must enter "admin" in both
cases.

11.1.1 New project creation

To create a new project you can work with the new style of windows and controls need to go
to the menu File -> New Project. In the window displayed on the screen must be selected
(left) under "Visual C #" a project. "NET Framework 3.0" and later (right) "Windows
Application (WPF)". You select the desired name to the project and folder where you will
store and click on the button "OK".

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 95

11.1.2 Creating a “SwanCSharp” window

When you create a new WPF project will create an App.xaml initial file that will run a initial
window Window1.xaml call. In order to create a "SwanCSharp" window it is necessary to
reference the project file "SwanCSharp.dll". You also need to reference the .Net Framework
class project "System.Drawing".
After SwanCSharp reference, change the Window1.xaml file because standard class inherits
from Window, and we want that file inherits from WindowBase class exists in
SwanCSharp_Controls. Inheritance is changed as follows:

• We eliminate from Window1.xaml labels <Grid ></ Grid >.

• In Window1.xaml we change the label name <Window

x:Class =" WindowsApplication1.Window1 " by <src:WindowBase

x:Class =" Pruebas2.Window1 " .

• In Window1.xaml we change the label name </ Window> by </ src:WindowBase >.

• Below the line xmlns:x =" http://schemas.microsoft.com/winfx/2006/xaml " we
add the new line with WindowBase class reference that is xmlns:src =" clr-

namespace:SwanCSharp_Controls;assembly=SwanCSharp " .

• In Window1.xaml.cs file we add the reference to the namespace line SwanCSharp
including “using SwanCSharp_Controls; “.

• In the file Window1.xaml.cs we change the line “public partial class Window1 :

System.Windows. Window” by “public partial class Window1 : WindowBase ”. In
this way we tell that're going to inherit from WindowBase.

• In the main constructor of the class (public Window1()) below you have to add
"base (true) ", leaving the constructor "public Window1() : base (true) ". The
“true ” value enables background transparency to our window if we do not want this
transparency change it to “false ”. In this overload of the constructor, the central
colour interface (theme) will always be blue.

• There is a second main constructor overload of the class (public Window1()) that
lets you select the center color of the application (subject) besides selecting the
transparency on/off. For example: “base (WindowTheme.Black, false) “. There are
the following themes: WindowTheme.Black, WindowTheme.Blue,
WindowTheme.Gold, WindowTheme.Gray, WindowTheme.Green,
WindowTheme.Red.

Once we get changes, from the original file Window1.xaml:

<Window x:Class =" WindowsApplication1.Window1 "
 xmlns =" http://schemas.microsoft.com/winfx/2006/xaml/presen tation "
 xmlns:x =" http://schemas.microsoft.com/winfx/2006/xaml "
 Title =" WindowsApplication1 " Height =" 300 " Width =" 300"
 >
 < Grid >
 </ Grid >

</ Window>

We obtain the modified file Window1.xaml:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 96

<src:WindowBase x:Class =" WindowsApplication1.Window1 "
 xmlns =" http://schemas.microsoft.com/winfx/2006/xaml/presen tation "
 xmlns:x =" http://schemas.microsoft.com/winfx/2006/xaml "
 xmlns:src =" clr-namespace:SwanCSharp_Controls;assembly=SwanCSha rp "
 Title =" WindowsApplication1 " Height =" 300 " Width =" 300"
 >

</ src:WindowBase >

From Window1.xaml.cs original file:

using System;
using System.Collections.Generic;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Shapes;

namespace WindowsApplication1
{
 /// <summary>
 /// Interaction logic for Window1.xaml
 /// </summary>

 public partial class Window1 : System.Windows. Window
 {

 public Window1()
 {
 InitializeComponent();
 }

 }

}

We obtain the modified file Window1.xaml.cs:

using SwanCSharp_Controls;
using System;
using System.Collections.Generic;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Shapes;

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 97

namespace WindowsApplication1
{
 /// <summary>
 /// Interaction logic for Window1.xaml
 /// </summary>

 public partial class Window1 : WindowBase
 {

 public Window1() : base (WindowTheme.Blue, true)
 {
 InitializeComponent();
 }

 }

}

In executing the project WindowsApplication1 we will display the window style
"SwanCSharp" including transparency on the background, and several advantages that will
be explained throughout this document.

For WindowTheme.Black theme:

namespace WindowsApplication1
{
 /// <summary>
 /// Interaction logic for Window1.xaml
 /// </summary>

 public partial class Window1 : WindowBase
 {

 public Window1() : base (WindowTheme.Black, true)
 {
 InitializeComponent();
 }

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 98

 }

}

For WindowTheme.Gold theme:

namespace WindowsApplication1
{
 /// <summary>
 /// Interaction logic for Window1.xaml
 /// </summary>

 public partial class Window1 : WindowBase
 {

 public Window1() : base (WindowTheme.Gold, true)
 {
 InitializeComponent();
 }

 }

}

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 99

For WindowTheme.Gray theme:

namespace WindowsApplication1
{
 /// <summary>
 /// Interaction logic for Window1.xaml
 /// </summary>

 public partial class Window1 : WindowBase
 {

 public Window1() : base (WindowTheme.Gray, true)
 {
 InitializeComponent();
 }

 }

}

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 100

For WindowTheme.Green theme:

namespace WindowsApplication1
{
 /// <summary>
 /// Interaction logic for Window1.xaml
 /// </summary>

 public partial class Window1 : WindowBase
 {

 public Window1() : base (WindowTheme.Green, true)
 {
 InitializeComponent();
 }

 }

}

For WindowTheme.Red theme:

namespace WindowsApplication1
{
 /// <summary>
 /// Interaction logic for Window1.xaml
 /// </summary>

 public partial class Window1 : WindowBase
 {

 public Window1() : base (WindowTheme.Red, true)
 {
 InitializeComponent();
 }

 }

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 101

}

Important Note: In versions of Windows Presentation Foundation (WPF) included in the
.NET Framework, up to date of publication of this document, DO NOT ALLOW WPF
windows inherit because XAML files are not inheritable. The WindowBase inheritance is
correct, but the form can NEVER be previewed in the IDE, and the objects on it will have to
be placed by the methods described later in this document.

11.1.3 Images and icons in Windows “SwanCSharp”

Many methods in the namespace "SwanCSharp_Controls" allow use pictures and / or icons,
and these files are recommended to be integrated into our development projects through the
resource file by Visual Studio project. This will integrate with our compiled and can be easily
called from the code to be passed as parameter.
In the picture below you can see two sample screens: The first one where images are
integrated in the resource file, and the latter which integrates icons in the resource file.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 102

11.1.4 Property “MainGrid”

In class "WindowBase" there is a property of type "Grid" call "MainGrid" that will be highly
relevant in the development of a window "SwanCSharp": Through Property "MainGrid" we
will be able to place all controls and objects to use in each form.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 103

11.1.5 Initial properties of “SwanCSharp” window

There are a set of initial properties that can be set in a window "SwanCSharp", these initial
properties determine the graphical display of the window.

11.1.5.1 Window title

The title of the window will be set by the method SetWindowTitle of WindowBase class and
within the constructor of the window XAML created (in our example Window1.xaml.cs). As
the first parameter is passed the text to be displayed as the title of the window; in the second
parameter reports the desired colour for the text, a feature that can not be applied on a
standard WinForm. An example may be:

public Window1() : base (false)
{
 InitializeComponent();
 SetWindowTitle("Test of SwanCSharp" , Brushes .White);
}

With the line "SetWindowTitle" included under "InitializeComponent" the window to be
displayed when running the solution is as follows:

11.1.5.2 Window icon

The icon of the window will be set by the method SetIconWindowTitle WindowBase class in
the constructor of the window XAML created (in our example Window1.xaml.cs). There are
two overloads for this method, the first parameter is passed as an object "Bitmap", and the
second overload is passed as a parameter an object "Icon". In this way we can establish as
an icon of the window one standard bitmap image or an ICO file (unlike the base form in .Net
that only supports ICO files). The icon will always be displayed in a size of 32x32. An
example may be:

public Window1() : base (false)
{

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 104

 InitializeComponent();
 SetWindowTitle("Test of SwanCSharp" , Brushes .White);
 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande);
}

You can check our sample image has been included in the project's resource file, as
explained in "Images and Icons in windows SwanCSharp" included earlier in this document.

With the line "SetIconWindowTitle" included under "InitializeComponent" the window to be
displayed when running the solution is as follows:

11.1.5.3 Control-Box buttons

The WindowBase’s control buttons (close, maximize, minimize, and notify) are not displayed
if not executed expressly methods, and this allows us complete freedom to define the
buttons, unlike standard developments in .Net that only allow to disable all buttons at once
(what prevents us from setting an icon in the title bar), or independently off maximize and
minimize icons unable to hide the close button. With WindowBase class we will be able to
deactivate the three separate buttons without losing other resources, using the methods
ShowCloseButton, ShowMaximizeButton, ShowMinimizeButton, and ShowNotifyButton.

public Window1() : base (false)
{
 InitializeComponent();

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();
}

In the above example you enable the window to show the three buttons, but if we remove
any of the methods, the window is displayed without the corresponding button can hide all
three simultaneously without losing the ability to include the icon in the toolbar title. The
buttons are displayed from right to left in the order in which they execute their methods, and

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 105

this allows us to alter the natural order of those buttons. The window to be displayed when
running the solution is as follows:

The button "Notify" simply shows a button that runs the "Hide()" command, and is very
useful, for example, for applications such as "Tray application".

11.1.5.4 “Moveable” window

One feature missing since Visual Basic 6.0 is the property "Moveable" of windows could
block drag the window around the screen of Windows, being fixed in the start position. In
either .Net version don’t exists property "Moveable" in the forms (to block drag a window
must develop custom classes), but in our "WindowBase" class there is a method called
IsMoveable that enables / disables drag the window.

public Window1() : base (false)
{
 InitializeComponent();

 IsMoveable(true);
}

In the above example the window can be dragged and change position into Windows screen.

public Window1() : base (false)
{
 InitializeComponent();

 IsMoveable(false);
}

In the above example the window cannot be dragged and change position into Windows
screen.

11.1.5.5 Watermark

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 106

In the forms "SwanCSharp" we can include a watermark in the background form with a
particular image. In class "WindowBase" there is a method called "ShowWaterMark" that
allows us to include the watermark; needs eight parameters which are: Bitmap image, the
image width, height, the initial position (using the enumerator WaterMarkStartPosition
existing in WindowBase class), and the four values to set a margin (left, top, right, bottom)
that allow us to move freely the watermark. An example may be:

public Window1() : base (false)
{
 InitializeComponent();

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();

 ShowWaterMark(Properties. Resources .SwanCSharp_Nuevo_Grande, 512, 190,
WaterMarkStartPosition .Center, 0, 0, 0, 0);
}

In the above example we use an image loaded as a resource in the project C#, and it
provides that the starting position is the center of the form, we send the four margin values
with "zero" because it does not want to move that watermark initial center position. The
resulting form is:

11.1.6 Controls and objects for windows “SwanCSharp”

In this section we will describe a set of controls and objects created exclusively for windows
"SwanCSharp", we can use freely in our developments.

Needless to say that all the functions defined in this section return a control type object or a
set of controls (StackPanel). If we want to create these controls in our "SwanCSharp"

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 107

windows we create the objects as module level variable so that we can at any time access its
properties and methods. Eg:

public partial class Window1 : WindowBase
{
 private TextBox mtxtTextBox;

 public Window1() : base (false)
 {
 mtxtTextBox = new TextBox ();
 mtxtTextBox = CreateWindowTextBox("txtTextBox" , 150, 24, 20, 0, 0,
0, TextAlignment .Left, true);
 MainGrid.Children.Add(mtxtTextBox);

 if (mtxtTextBox.Text = "Test")
 {
 }
 }
}

In the previous example we declare control "mtxtTextBox" as module level variable, so we
can access its methods and properties from any window procedure "Window1".

However, if the object returned by the custom control is not a specific control but a collection
of controls (StackPanel), we create the control group at the module level, and we can access
its child elements to reach their methods and properties . Eg:

public partial class Window1 : WindowBase
{
 private StackPanel mobjUser;

 public Window1() : base (false)
 {
 mobjUser = new StackPanel ();
 mobjUser = CreateWindowTextBoxWithLabel("txtUser" , 135, 24, 6, 60,
0, 0, TextAlignment .Left, true , "lblUser" , "User" , 123, Colors .White,
TextAlignment .Right);

 MainGrid.Children.Add(mobjUser);

 mobjUser.Children[1].Focus();
 }
}

In the previous example declare StackPanel control "mobjUser" as module level variable, so
we can access its methods and properties from any procedure of "Window1". Later
"SwancSharp" created in the StackPanel a textbox and a label, therefore the "child" elements
of "mobjUser" are: "0" (TextBlock) and "1" (TextBox). We want to access the method "Focus
()" of the TextBox (second element of StackPanel), and for this example we use the method
"Children" of main object "StackPanel".

When we use StackPanel objects may not have access to all methods of each “child” object,
for example cannot directly access the "Text" property of an object "TextBox" using the
"children" of "StackPanel". For example if we have a StackPanel "stkUser" whose first
element "child" is a "TextBlock" and second element is a "TextBox", if we clean the box can
do:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 108

TextBox lobjUser = (TextBox)stkUser.Children[1];
lobjUser.Text = "" ;

Or we can use "SetValue":

stkUser.Children[1].SetValue(TextBox .TextProperty, "");

Sometimes we can find any particular case in which SetValue unusable. For example if we
have a StackPanel "stkPassword" whose first element "child" is a "TextBlock" and second
element is a "PasswordBox" if we clear the text box can not access the property "Password"
from "SetValue" by therefore we can only clean by:

PasswordBox lobjPassword = (PasswordBox)stkPassword.Children[1];
lobjPassword.Password = "" ;

11.1.6.1 Command button

In class "WindowBase" we have a control "Button" with personalized style according to the
window "SwanCSharp". There are two functions that return a custom "Button" object:
"CreateWindowButton" and "CreateWindowButtonWithImage". The first function create
buttons that only show text, and need nine parameters: the text to display in the button
(content), the name of the control, the width of the button, the height of button, and the
following 4 parameters are applied margins (left, top, right, bottom) to fit the button at the
desired location within the form; in the last parameter is passed the object
"RoutedEventHandler" that contains the procedure where there will be the process when
clicking on the button. In the second function (CreateWindowButtonWithImage) shows text
and an image on the button, and have the same parameters as the first, but adding other
three parameters to define the image to be inserted and its width and height. Within this
there are two overloads for second function, in the first we pass a "Bitmap", and the second
we can pass an "Icon" object.

Below we show an example using the "CreateWindowButton", excluding an image on the
display of the button.

public Window1() : base (false)
{
 InitializeComponent();

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();

 IsMoveable(true);

 ShowWaterMark(Properties. Resources .SwanCSharp_Nuevo_Grande, 512, 190,
WaterMarkStartPosition .Center, 0, 0, 0, 0);

 Button lobjButton = CreateWindowButton("Execute" , "cmdExecute" , 130,
25, 215, 150, 0, 0, cmdExecute_Click);
 lobjButton.Click += new RoutedEventHandler (cmdExecute_Click);

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 109

 MainGrid.Children.Add(lobjButton);
}

private void cmdExecute_Click(object sender, RoutedEventArgs e)
{
 /*
 **** Insert our code here for Click event
 */
}

In the code we can see that we call the function "CreateWindowButton" which returns a
"Button" control. Previously we created the "cmdExecute_Click" with the code to execute
when the button is pressed. The last line add the "Button" object on property "MainGrid" of
our form. The result is as follows:

Below we show an example using CreateWindowButtonWithImage function, including icon
(ICO) in the display of the button (the ICO file is included in the resources of the sample C#
project).

public Window1() : base (false)
{
 InitializeComponent();

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();

 IsMoveable(true);

 ShowWaterMark(Properties. Resources .SwanCSharp_Nuevo_Grande, 512, 190,
WaterMarkStartPosition .Center, 0, 0, 0, 0);

 Button lobjButton = CreateWindowButtonWithImage("Execute" ,
"cmdExecute" , 130, 25, 215, 150, 0, 0,

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 110

Properties. Resources .SwanCSharp_Solo_Logo_Grande, 16, 16,
cmdExecute_Click);

 MainGrid.Children.Add(lobjButton);
}

private void cmdExecute_Click(object sender, RoutedEventArgs e)
{
 /*
 **** Insert our code here for Click event
 */
}

In the code we can see that we call the function "CreateWindowButtonWithImage" which
returns control "Button". Previously we created the "cmdExecute_Click" with the code to
execute when the button is pressed. The last line gives the object "Button" on property
"MainGrid" of our form. The result is as follows:

11.1.6.2 Check Box

In "WindowBase" class we have a “CheckBox” custom control style according to the
"SwanCSharp" window. There is a function that returns a custom "CheckBox":
"CreateWindowCheckBox" that includes a total of 9 parameters. The text to display in the
control (content), the name of the control, width, height, and the 4 following parameters are
applied margins (left, top, right, bottom) to position the control in the desired location within
the form, in the last parameter indicates whether you want a "shadow" effect for the form.

Below we show an example using the "CreateWindowCheckBox":

public Window1() : base (false)
{
 InitializeComponent();

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 ShowCloseButton();

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 111

 ShowMaximizeButton();
 ShowMinimizeButton();

 IsMoveable(true);

 ShowWaterMark(Properties. Resources .SwanCSharp_Nuevo_Grande, 512, 190,
WaterMarkStartPosition .Center, 0, 0, 0, 0);

 CheckBox chkTest = CreateWindowCheckBox("Check Test" , "chkTest" , 150,
24, 223, 160, 0, 0, true);
 MainGrid.Children.Add(chkTest);
}

The result is as follows:

11.1.6.3 Main menu

In class "WindowBase" have a custom control that allows us to include an options menu
(Pop-Up) with all the necessary features, allowing also include some special features, such
as an icon for the horizontal main menu, and to allow including graphics icons in the vertical
"Pop-Up" menu.
To create a menu in a "SwanCSharp" window let's use the "CreateWindowMenus" which will
be added to the object MainGrid.
The “SwanCSharp” menu allows us to create a first row of horizontal menu options that open
windows "Popup" with vertical menu options, allowing recursively add all desired options and
submenus.
It also allows the inclusion of graphic icons to the left of each menu option, allowing those
icons also in the main menu options horizontally. The function allows you to enable / disable
icons display in vertical and horizontal options separately.

The first step in creating a menu is to create an object of type "MenuOptions" that exists in
the namespace "SwanCSharp_Controls", the object "MenuOptions" is a structure of five
variables: The first variable "NameMainMenuControl" which is the name defined internal
control, the second variable is "NameToDisplayMainMenu" which is the name of the menu

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 112

item to be displayed on screen, the third variable is "IconToDisplay" which load a graphic
icon with an “icon” object, the fourth variable is "SubmenuOptions" which is a new object
"MenuOptions" we can create to include in the menu we are creating a second menu that
depend on it, by this fourth variable that we want to create submenus recursively, the fifth
variable is "MenuClickEvent "which is a variable that inform an object "RoutedEventHandler",
which is the procedure that will run when you press on the menu (click event).

We will display a menu of example, and for this we will imagine that we want an option menu
with a horizontal option called "File" that clicking on it will show us a window "Popup" with a
submenu option called "New".
The first step is to identify how many options we will have to manage a procedure to be run
when clicked. In our example in the "File" is not going to handle a click, as it shows the
submenu "New", therefore we do not need an event "RoutedEventHandler". In contrast to the
"New" if we need a procedure to include the code to execute when clicked. The first step is to
create the object "RouterEventHandler" to the "New":

private void mnuNew_Click(object sender, RoutedEventArgs e)
{

}

Within the constructor of the window "Window1" let's create object "MenuOptions" that will
define the menu. First create the vertical main menu "File":

public Window1() : base (false)
{
 InitializeComponent();

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();

 IsMoveable(true);

 MenuOption [] lobjMenuOptions = new MenuOption [1];
 // First option in Main Menu
 lobjMenuOptions[0].NameMainMenuControl = "File" ;
 lobjMenuOptions[0].NameToDisplayMainMenu = "File" ;
 lobjMenuOptions[0].IconToDisplay = Properties. Resources .Floppy_Drive;
}

In the source code above you can see that we create an array of "MenuOption" with a single
element, as in the horizontal menu only have the "File". To use the graphic icon
Floppy_Drive we previously loaded as a project resource type "Icon". The next step is to
create a second object "MenuOption" different to the submenu "New":

MenuOption [] lobjSubMenuFileOption = new MenuOption [1];
lobjSubMenuFileOption[0].NameMainMenuControl = "New" ;
lobjSubMenuFileOption[0].NameToDisplayMainMenu = "New" ;
lobjSubMenuFileOption[0].IconToDisplay = Properties . Resources .newfolder;
lobjSubMenuFileOption[0].MenuClickEvent += mnuNew_C lick;

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 113

In the previous source code looks like interact the procedure "mnuNew_Click" with the click
event of this menu item (New). Now we want the "New" is a submenu "Popup" to open when
you click on "File". So the object "lobjSubmenuFileOption" becomes an object of
"lobjMenuOptions".

lobjMenuOptions[0].SubMenuOptions = lobjSubMenuFile Option;

We have already constructed the object "MenuOptions" to create the menu, the next step is
to call the method that will build the needed object and then add it to the "MainGrid" our
"SwanCSharp" window:

Menu lobjMenu = CreateWindowMenus(lobjMenuOptions, true , true);
MainGrid.Children.Add(lobjMenu);

In the first parameter of "CreateWindowMenus" pass the object "MenuOption" created, in the
second parameter will indicate whether we wish to show the icons in the main horizontal
menu, and the third parameter passed if we want to show icons on all vertical options menu.
The complete code for the window looks like this:

using SwanCSharp;
using SwanCSharp_Controls;
using System;
using System.Collections.Generic;
using System.IO;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Markup;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Shapes;

namespace Test2
{
 public partial class Window1 : WindowBase
 {
 public Window1() : base (false)
 {
 InitializeComponent();

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);
 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();

 ShowWaterMark(Properties. Resources .SwanCSharp_Nuevo_Grande,
512, 190, WaterMarkStartPosition .Center, 0, 0, 0, 0);

 IsMoveable(true);

 MenuOption [] lobjMenuOptions = new MenuOption [1];
 // First option in Main Menu

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 114

 lobjMenuOptions[0].NameMainMenuControl = "File" ;
 lobjMenuOptions[0].NameToDisplayMainMen u = "File" ;
 lobjMenuOptions[0].IconToDisplay =
Properties. Resources .Floppy_Drive;
 // Suboptions in First Submenu File
 MenuOption [] lobjSubMenuFileOption = new MenuOption [1];
 lobjSubMenuFileOption[0].NameMainMenuCo ntrol = "New" ;
 lobjSubMenuFileOption[0].NameToDisplayM ainMenu = "New" ;
 lobjSubMenuFileOption[0].IconToDisplay =
Properties. Resources .newfolder;
 lobjSubMenuFileOption[0].MenuClickEvent += mnuNew_Click;
 lobjMenuOptions[0].SubMenuOptions = lob jSubMenuFileOption;

 Menu lobjMenu = CreateWindowMenus(lobjMenuOptions, true , true);

 MainGrid.Children.Add(lobjMenu);
 }

 private void mnuNew_Click(object sender, RoutedEventArgs e)
 {
 /*
 * Source code to execute New option ev ent click.
 */
 }
 }
}

Create a "SwanCSharp" menu is based on creating "MenuOptions" objects that are added to
the main structure recursively to finish by calling the function "CreateWindowMenus" that will
return the "Menu" object built and added to the "MainGrid" of our window. Below we show an
example of more complete menu:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 115

using SwanCSharp;
using SwanCSharp_Controls;
using System;
using System.Collections.Generic;
using System.IO;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Markup;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Shapes;

namespace Test2
{
 /// <summary>
 /// Interaction logic for Window1.xaml
 /// </summary>

 public partial class Window1 : WindowBase
 {
 public Window1() : base (false)
 {
 InitializeComponent();

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 ShowCloseButton();
 ShowMaximizeButton();

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 116

 ShowMinimizeButton();

 ShowWaterMark(Properties. Resources .SwanCSharp_Nuevo_Grande,
512, 190, WaterMarkStartPosition .Center, 0, 0, 0, 0);

 IsMoveable(true);

 MenuOption [] lobjMenuOptions = new MenuOption [2];
 // First option in Main Menu
 lobjMenuOptions[0].NameMainMenuControl = "File" ;
 lobjMenuOptions[0].NameToDisplayMainMen u = "File" ;
 lobjMenuOptions[0].IconToDisplay =
Properties. Resources .Floppy_Drive;
 // Suboptions in First Submenu File
 MenuOption [] lobjSubMenuFileOption = new MenuOption [4];
 lobjSubMenuFileOption[0].NameMainMenuCo ntrol = "New" ;
 lobjSubMenuFileOption[0].NameToDisplayM ainMenu = "New" ;
 lobjSubMenuFileOption[0].IconToDisplay =
Properties. Resources .newfolder;
 lobjSubMenuFileOption[0].MenuClickEvent += mnuNew_Click;
 lobjSubMenuFileOption[1].NameMainMenuCo ntrol = "Open" ;
 lobjSubMenuFileOption[1].NameToDisplayM ainMenu = "Open" ;
 lobjSubMenuFileOption[1].MenuClickEvent += mnuOpen_Click;
 lobjSubMenuFileOption[1].IconToDisplay =
Properties. Resources .propertiesORoptions;
 // Third level suboptions for the submenu option "O pen"
 MenuOption [] lobjSubMenuNewOption = new MenuOption [2];
 lobjSubMenuNewOption[0].NameMainMenuCon trol = "File" ;
 lobjSubMenuNewOption[0].NameToDisplayMa inMenu = "File" ;
 lobjSubMenuNewOption[0].IconToDisplay =
Properties. Resources .Floppy_Drive;
 lobjSubMenuNewOption[1].NameMainMenuCon trol = "Folder" ;
 lobjSubMenuNewOption[1].NameToDisplayMa inMenu = "Folder" ;
 lobjSubMenuNewOption[1].IconToDisplay =
Properties. Resources .newfolder;
 lobjSubMenuFileOption[1].SubMenuOptions = lobjSubMenuNewOption;
 lobjMenuOptions[0].SubMenuOptions = lob jSubMenuFileOption;

 lobjSubMenuFileOption[2].NameMainMenuCo ntrol = "-" ;
 lobjSubMenuFileOption[2].NameToDisplayM ainMenu = "-" ;
 lobjSubMenuFileOption[3].NameMainMenuCo ntrol = "Exit" ;
 lobjSubMenuFileOption[3].NameToDisplayM ainMenu = "Exit" ;
 lobjSubMenuFileOption[3].MenuClickEvent += mnuExit_Click;
 lobjSubMenuFileOption[3].IconToDisplay =
Properties. Resources .delete_16x;

 // Second option in Main Menu
 lobjMenuOptions[1].NameMainMenuControl = "Configuration" ;
 lobjMenuOptions[1].NameToDisplayMainMen u = "Configuration" ;
 lobjMenuOptions[1].IconToDisplay = Prop erties. Resources .repair;
 // Suboptions in Second Submenu File
 MenuOption [] lobjSubMenuSetupOption = new MenuOption [2];
 lobjSubMenuSetupOption[0].NameMainMenuC ontrol = "Setup" ;
 lobjSubMenuSetupOption[0].NameToDisplay MainMenu = "Setup" ;
 lobjSubMenuSetupOption[0].IconToDisplay =
Properties. Resources .services;
 lobjSubMenuSetupOption[1].NameMainMenuC ontrol = "Printer" ;
 lobjSubMenuSetupOption[1].NameToDisplay MainMenu = "Printer" ;

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 117

 lobjSubMenuSetupOption[1].IconToDisplay =
Properties. Resources .printer;
 lobjMenuOptions[1].SubMenuOptions = lob jSubMenuSetupOption;

 Menu lobjMenu = CreateWindowMenus(lobjMenuOptions, true , true);

 MainGrid.Children.Add(lobjMenu);
 }

 private void mnuNew_Click(object sender, RoutedEventArgs e)
 {
 /*
 * Source code to execute New option ev ent click.
 */
 }

 private void mnuOpen_Click(object sender, RoutedEventArgs e)
 {
 }

 private void mnuExit_Click(object sender, RoutedEventArgs e)
 {
 this .Close();
 }
 }
}

11.1.6.1 ListBox

In class "WindowBase" we have a control "ListBox" style personalized according to the
window "SwanCSharp". There are two functions that return "ListBox" and "StackPanel"
custom objects to us (as chosen function): "CreateWindowListBox" and
"CreateWindowListBoxWithLabel". Both functions allow us to select if you want a shadow
effect to control the size, etc.

The first function (CreateWindowLabelBox) only creates the text box, and receive a total of 8
parameters: The control name, the width of the control, the height of the control, and the
following 4 parameters are the margins apply (left, top, right, bottom) to position the control at
the desired location within the form, in the last parameter indicates whether to show an effect
shade.

In the second function (CreateWindowListBoxWithLabel) create a StackPanel that integrates
text label to display and ListBox, all in a single object. The function consists of thirteen
parameters: the first eight parameters are to define the "ListBox" and the last five parameters
are to define the "Labelbox". The first eight parameters are exactly the same as in the
"CreateWindowListBox", the last five parameters are: The name that will be in control, the
text to display on the label, the height of the control, the text colour of the label and alignment
of the text within the label.

Is included below the source code for an example of on list box:

public Window1() : base (false)
{
 InitializeComponent();

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 118

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();

 ShowWaterMark(Properties. Resources .SwanCSharp_Nuevo_Grande, 512, 190,
WaterMarkStartPosition .Center, 0, 0, 0, 0);

 IsMoveable(true);

 StackPanel stkList = CreateWindowListBoxWithLabel("lstList" , 200, 150,
20, 80, 0, 0, true , "lblList" , "List" , 24, Colors .Black,
TextAlignment .Left);

 ListBox lstList = (ListBox)stkList.Children[1];

 MainGrid.Children.Add(stkList);
}

11.1.6.2 Text box

In class "WindowBase" we have a control "TextBox" style personalized according to the
window "SwanCSharp". There are two functions that return "TextBox" and "StackPanel"
custom objects to us (as chosen function): "CreateWindowTextBox" and
"CreateWindowTextBoxWithLabel". Both functions allow us to select if you want a shadow
effect to control the size, text alignment, etc.

The first function (CreateWindowTextBox) only creates the text box, and receive a total of 9
parameters: The control name, the width of the control, the height of the control, and the
following 4 parameters are the margins apply (left, top, right, bottom) to position the control at
the desired location within the form, in the eighth parameter is passed chosen text alignment,
in the last parameter indicates whether to show an effect shade.

In the second function (CreateWindowTextBoxWithLabel) create a StackPanel that
integrates text label to display and text box, all in a single object. The function consists of
fourteen parameters: the first nine parameters are to define the "TextBox" and the last five
parameters are to define the "Labelbox". The first nine parameters are exactly the same as in
the "CreateWindowTextBox", the last five parameters are: The name that will be in control,
the text to display on the label, the width of the control, the text colour of the label and
alignment of the text within the label.

Is included below the source code for an example of three text boxes in various combinations
(unlabeled and shade, shady unlabeled and labelled shaded):

public Window1() : base (false)
{
 InitializeComponent();

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 119

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();

 ShowWaterMark(Properties. Resources .SwanCSharp_Nuevo_Grande, 512, 190,
WaterMarkStartPosition .Center, 0, 0, 0, 0);

 IsMoveable(true);

 TextBox lobjTextBox = CreateWindowTextBox("txtTextBox" , 150, 24, 265,
150, 0, 0, TextAlignment .Left, false);
 MainGrid.Children.Add(lobjTextBox);

 TextBox lobjTextBoxShadow =
CreateWindowTextBox("txtTextBoxWithShadow" , 150, 24, 265, 184, 0, 0,
TextAlignment .Right, true);
 MainGrid.Children.Add(lobjTextBoxShadow);

 StackPanel lobjTextBoxWithLabel =
CreateWindowTextBoxWithLabel("txtTextBoxWithLabel" , 150, 24, 185, 218, 0,
0, TextAlignment .Right, true , "lblTextBox" , "Full name:" , 80, Colors .White,
TextAlignment .Right);
 MainGrid.Children.Add(lobjTextBoxWithLabel);
}

According to the above source code, to run the application, it would show on the screen the
following "SwanCSharp" form:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 120

11.1.6.3 PasswordBox

In "WindowBase" class we have a "PasswordBox" control custom style according to the
window "SwanCSharp". There are two functions that return objects we "PasswordBox" and
"StackPanel": "CreateWindowPasswordBox" and "CreateWindowPasswordBoxWithLabel".
Both functions perform exactly the same of the functions “CreateWindowTextBox” and
“CreateWindowTextBoxWithLabel" with the difference that instead of generating a standard
“TextBox", those functions generate a special box for entering passwords.

11.1.6.1 LabelData

In "WindowBase" class we have a "LabelData" control customized style according to the
window "SwanCSharp". The control creation function returns a "StackPanel".

The "CreateWindowLabelData" function is designed to create a control that displays text
divided into two parts: Label and data. The idea is to display data in different color for label
and data. Are passed a total of fifteen parameters: The name that will be in control, the
height of the control, the size of the font, the following 4 parameters are applied margins (left,
top, right, bottom) to position control in the desired location within the form, the text to display
on the label, the label width, text alignment on the label, the color of the label text, the width
of the data, the text alignment of the data, and the text color of the data.

Below we show the source code for an example of two controls "LabelData" on a form
"SwanCSharp":

public Window1() : base (false)
{
 InitializeComponent();

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();

 ShowWaterMark(Properties. Resources .SwanCSharp_Nuevo_Grande, 512, 190,
WaterMarkStartPosition .Center, 0, 0, 0, 0);

 IsMoveable(true);

 StackPanel lobjStack = CreateWindowLabelData("lobjStack" , 24, 14, 100,
100, 0, 0, "Label:" , 80, TextAlignment .Left, Brushes .White, "150067" , 140,
TextAlignment .Left, Brushes .Red);
 MainGrid.Children.Add(lobjStack);

 StackPanel lobjStack2 = CreateWindowLabelData("lobjStack2" , 24, 14,
100, 130, 0, 0, "Label 2:" , 80, TextAlignment .Left, Brushes .White,
"678921" , 140, TextAlignment .Left, Brushes .Red);
 MainGrid.Children.Add(lobjStack2);}

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 121

According to the above source code, to run the application, it would show on the screen the
following "SwanCSharp" form:

If you want to change any data during the execution of our development, we can do it this
way:

TextBlock lobjText = (TextBlock) lobjStack.Children[1];
lobjText.Text = "111222" ;

11.1.6.2 GroupBox

In class "WindowBase" we have a "GroupBox" control with personalized style according to
the window "SwanCSharp". There is a function that returns a custom "GroupBox":
"CreateWindowGroupBox". The function has two overloads.

The first overload has three parameters: The name of the control, the caption text control,
and an array of object "UIElement". This overload will create a “GroupBox” that covers the
entire window, avoiding the title bar and the area reserved for the main menu.

The second overload has nine parameters: The name of the control, the caption text of the
control, the control width, the control height, the following four parameters correspond to the
"Margin", and an array of object "UIElement". This second overload allows us to fully define
the "GroupBox" the size and location within the form.

The “GroupBox” control is used to contain other child controls, and to define the child
controls contained in the "GroupBox" is used "UIElement" array. For example, if we place
three text boxes inside the GroupBox, before array creating, we create a three-object
"UIElement". Eg:

UIElement [] lobjUIElements = new UIElement [3];

TextBox lobjTextBox = CreateWindowTextBox("txtTextBox" , 150, 24, 20, 0, 0,
0, TextAlignment .Left, false);
lobjUIElements[0] = lobjTextBox;

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 122

TextBox lobjTextBoxShadow = CreateWindowTextBox("txtTextBoxWithShadow" ,
150, 24, 20, 34, 0, 0, TextAlignment .Right, true);
lobjUIElements[1] = lobjTextBoxShadow;

StackPanel lobjTextBoxWithLabel =
CreateWindowTextBoxWithLabel("txtTextBoxWithLabel" , 150, 24, 0, 68, 0, 0,
TextAlignment .Right, true , "lblTextBox" , "Full name:" , 80, Colors .White,
TextAlignment .Right);
lobjUIElements[2] = lobjTextBoxWithLabel;

Once you create the "UIElement" array with all the controls that will have the "GroupBox"
inside, we create the “GroupBox” control and add it to the property "MainGrid" window:

GroupBox lobjGroupBox = new GroupBox ();
lobjGroupBox = CreateWindowGroupBox("grpGroup" , " Management " , 300, 200,
16, 85, 0, 0, lobjUIElements);

MainGrid.Children.Add(lobjGroupBox);

Following is the complete source code of the previous example that shows a "GroupBox"
with three boxes of text at a specific form:

public Window1() : base (false)
{
 InitializeComponent();

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();

 ShowWaterMark(Properties. Resources .SwanCSharp_Nuevo_Grande, 512, 190,
WaterMarkStartPosition .Center, 0, 0, 0, 0);

 IsMoveable(true);

 UIElement [] lobjUIElements = new UIElement [3];

 TextBox lobjTextBox = CreateWindowTextBox("txtTextBox" , 150, 24, 20, 0,
0, 0, TextAlignment .Left, false);
 lobjUIElements[0] = lobjTextBox;

 TextBox lobjTextBoxShadow = CreateWindowTextBox("txtTextBoxWithShadow" ,
150, 24, 20, 34, 0, 0, TextAlignment .Right, true);
 lobjUIElements[1] = lobjTextBoxShadow;

 StackPanel lobjTextBoxWithLabel =
CreateWindowTextBoxWithLabel("txtTextBoxWithLabel" , 150, 24, 0, 68, 0, 0,
TextAlignment .Right, true , "lblTextBox" , "Full name:" , 80, Colors .White,
TextAlignment .Right);
 lobjUIElements[2] = lobjTextBoxWithLabel;

 GroupBox lobjGroupBox = new GroupBox ();

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 123

 lobjGroupBox = CreateWindowGroupBox("grpGroup" , " Management " , 300,
200, 16, 85, 0, 0, lobjUIElements);

 MainGrid.Children.Add(lobjGroupBox);
}

According to the above source code, at run the application, it would show on the screen the
following "SwanCSharp" form:

11.1.6.1 GroupLabelData

In "WindowBase" class have control "GroupLabelData" customized style according to the
"SwanCSharp" window. There is a function that returns a "GroupBox" custom:
"CreateWindowGroupLabelData".

The "CreateWindowGroupLabelData" function has thirteen parameters: The name of the
control, the title of the control, the control width, the control height, the size of the font, the
following four parameters correspond the "Margin", the height of the whole "LabelData", the
width of the "label", the width of the "Data", and the object array "LabelData" that contains the
information of each data tag line.

The first step is to create a "LabelData" array. In our case we will create three lines with
corresponding data labels each label. E.g.:

LabelData [] lobjLabelData = new LabelData [3];

lobjLabelData[0].LabelText = "Label One:" ;
lobjLabelData[0].ColorLabelText = Brushes .White;
lobjLabelData[0].LabelAlignment = TextAlignment .Left;
lobjLabelData[0].DataText = "123487" ;
lobjLabelData[0].ColorDataText = Brushes .Red;
lobjLabelData[0].DataAlignment = TextAlignment .Left;

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 124

lobjLabelData[1].LabelText = "Label Two:" ;
lobjLabelData[1].ColorLabelText = Brushes .White;
lobjLabelData[1].LabelAlignment = TextAlignment .Left;
lobjLabelData[1].DataText = "765832" ;
lobjLabelData[1].ColorDataText = Brushes .Red;
lobjLabelData[1].DataAlignment = TextAlignment .Left;

lobjLabelData[2].LabelText = "Label Three:" ;
lobjLabelData[2].ColorLabelText = Brushes .White;
lobjLabelData[2].LabelAlignment = TextAlignment .Left;
lobjLabelData[2].DataText = "387496" ;
lobjLabelData[2].ColorDataText = Brushes .Red;
lobjLabelData[2].DataAlignment = TextAlignment .Left;

Once you create the "LabelData" array object with the information of each line, we create
"GroupLabelData" control (which will be a GroupBox object) and add it to the "MainGrid"
window property:

GroupBox lobjGroup = CreateWindowGroupLabelData("lobjGroup" , "Label and
Data" , 175, 140, 14, 100, 80, 0, 0, 24, 120, 100, lobjLa belData);

MainGrid.Children.Add(lobjGroup);

Below we show the complete source code of the previous example that shows a
"GroupLabelData" text lines:

public Window1() : base (false)
{
 InitializeComponent();

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();

 ShowWaterMark(Properties. Resources .SwanCSharp_Nuevo_Grande, 512, 190,
WaterMarkStartPosition .Center, 0, 0, 0, 0);

 IsMoveable(true);

 LabelData [] lobjLabelData = new LabelData [3];

 lobjLabelData[0].LabelText = "Label One:" ;
 lobjLabelData[0].ColorLabelText = Brushes .White;
 lobjLabelData[0].LabelAlignment = TextAlignment .Left;
 lobjLabelData[0].DataText = "123487" ;
 lobjLabelData[0].ColorDataText = Brushes .Red;
 lobjLabelData[0].DataAlignment = TextAlignment .Left;

 lobjLabelData[1].LabelText = "Label Two:" ;
 lobjLabelData[1].ColorLabelText = Brushes .White;
 lobjLabelData[1].LabelAlignment = TextAlignment .Left;
 lobjLabelData[1].DataText = "765832" ;
 lobjLabelData[1].ColorDataText = Brushes .Red;
 lobjLabelData[1].DataAlignment = TextAlignment .Left;

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 125

 lobjLabelData[2].LabelText = "Label Three:" ;
 lobjLabelData[2].ColorLabelText = Brushes .White;
 lobjLabelData[2].LabelAlignment = TextAlignment .Left;
 lobjLabelData[2].DataText = "387496" ;
 lobjLabelData[2].ColorDataText = Brushes .Red;
 lobjLabelData[2].DataAlignment = TextAlignment .Left;

 GroupBox lobjGroup = CreateWindowGroupLabelData("lobjGroup" , "Label and
Data" , 175, 140, 14, 100, 80, 0, 0, 24, 120, 100, lobjLa belData);

 MainGrid.Children.Add(lobjGroup);
}

According to the above source code, to run the application, it would show on the screen the
following "SwanCSharp" form:

11.1.6.2 ComboBox

In class "WindowBase" we have a "ComboBox" control style personalized according to the
window "SwanCSharp". There are two functions that return custom "ComboBox" and
"StackPanel" objects (as chosen function): "CreateWindowComboBox" and
"CreateWindowComboBoxWithLabel". Both functions allow you to select whether you want a
shadow effect to control the size, text alignment, etc.

The first function (CreateWindowComboBox) only creates the control, and pass a total of
eight parameters: The name that will be in control, control the width, the height of the control,
and the next four parameters are the margins to apply (left, top, right, bottom) to position the
control in the desired location within the form, the last parameter indicates whether to show
an effect shade.

In the second function (CreateWindowComboBoxWithLabel) creates a StackPanel that
integrates text label to display and control, all in a single object. The function consists of

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 126

fifteen parameters: the first eight parameters to define the "ComboBox", the next two to load
the data in the control, and the last five parameters to define the "Labelbox". The first eight
parameters are exactly the same as in the "CreateWindowComboBox", the following two
parameters are of type "string []" to pass the data and the index of each row to load (if you do
not want to load data, passed both parameters as "null"), the last five parameters are: the
name that will be in control, the text to display on the label, the width of the control, the text
colour of the label and the text alignment within the label.

The following is the source code for an example of three ComboBox in various combinations
(unlabeled and shade, shady unlabeled and labelled shaded):

public Window1() : base (false)
{
 InitializeComponent();

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();

 ShowWaterMark(Properties. Resources .SwanCSharp_Nuevo_Grande, 512, 190,
WaterMarkStartPosition .Center, 0, 0, 0, 0);

 IsMoveable(true);

 string [] lstrData = new string [3];
 string [] lstrIndex = new string [3];

 lstrData[0] = "Option 1" ;
 lstrIndex[0] = "1" ;

 lstrData[1] = "Option 2" ;
 lstrIndex[1] = "2" ;

 lstrData[2] = "Option 3" ;
 lstrIndex[2] = "3" ;

 ComboBox lobjComboBox = CreateWindowComboBox("cmbComboBox" , 150, 24,
100, 150, 0, 0, false);
 SW_Miscellaneous .LoadDataInComboBox(lstrData, lstrIndex, ref
lobjComboBox);

 ComboBox lobjComboBox2 = CreateWindowComboBox("cmbComboBox2" , 150, 24,
100, 180, 0, 0, true);
 SW_Miscellaneous .LoadDataInComboBox(lstrData, lstrIndex, ref
lobjComboBox2);

 StackPanel lobjComboBox3 =
CreateWindowComboBoxWithLabel("cmbComboBox3" , 150, 24, 20, 210, 0, 0, true ,
lstrData, lstrIndex,
"lblCombo" , "Options:" ,80, Colors .White, TextAlignment .Right);

 MainGrid.Children.Add(lobjComboBox);
 MainGrid.Children.Add(lobjComboBox2);

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 127

 MainGrid.Children.Add(lobjComboBox3);
}

According to the above source code, at execute the application, it would show on the screen
the following form "SwanCSharp":

11.1.6.3 DataGrid

In "WindowBase" class we have a "DataGrid" control custom style according to the window
"SwanCSharp". There is a function that returns a "ListView" custom:
"CreateWindowDataGrid". The function has nine parameters: The name of the control, the
object "DataTable" that contain the columns to display and the data, the width of the control,
the height of the control, the following four parameters correspond to "Margin ", and the last
parameter indicates whether you want a shadow effect to control. An example of call control
"DataGrid" can be:

DataConnectionAccess lobjConnection = new
DataConnectionAccess ("Database.mdb" , "" , "" , DatabaseManager .Access);
DataTable ldatData = lobjConnection.SQLSelectExecute("SELECT * FROM
Staff");
lobjConnection.CloseConnection();

ListView lobjListView = CreateWindowDataGrid("datListView" , ldatData, 600,
300, 100, 150, 0, 0, true);

MainGrid.Children.Add(lobjListView);

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 128

Is shown below the complete source code of the previous example that shows a "DataGrid"
with existing data in a database "Microsoft Access":

public Window1() : base (false)
{
 InitializeComponent();

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();

 ShowWaterMark(Properties. Resources .SwanCSharp_Nuevo_Grande, 512, 190,
WaterMarkStartPosition .Center, 0, 0, 0, 0);

 IsMoveable(true);

 DataConnectionAccess lobjConnection = new
DataConnectionAccess ("Database.mdb" , "" , "" , DatabaseManager .Access);
 DataTable ldatData = lobjConnection.SQLSelectExecute("SELECT * FROM
Staff");
 lobjConnection.CloseConnection();

 ListView lobjListView = CreateWindowDataGrid("datListView" , ldatData,
600, 300, 100, 150, 0, 0, true);

 MainGrid.Children.Add(lobjListView);

}

According to the above source code, to run the application, it would show on the screen the
following "SwanCSharp" window:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 129

11.1.6.4 TabControl

In "WindowBase" class we have a "TabControl" control custom style according to the window
"SwanCSharp". There is a function that returns a "TabControl" custom:
"CreateWindowTabControl". The function has nine parameters: The name of the control, an
array string object with the items, the width of the control, the height of the control, the
following four parameters correspond to "Margin ", and the last parameter indicates whether
you want a shadow effect to control. An example of call control "TabControl" can be:

string [] lstrItems = new string [3];
lstrItems[0] = "Item 1" ;
lstrItems[1] = "Item 2" ;
lstrItems[2] = "Item 3" ;

TabControl lobjTab = CreateWindowTabControl("tabMain" , lstrItems, 350, 300,
40, 80, 40, 40, true);

MainGrid.Children.Add(lobjTab);

Is shown below the complete source code of the previous example that shows a "DataGrid"
with existing data in a database "Microsoft Access":

public Window1() : base (false)
{
 InitializeComponent();

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 130

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();

 ShowWaterMark(Properties. Resources .SwanCSharp_Nuevo_Grande, 512, 190,
WaterMarkStartPosition .Center, 0, 0, 0, 0);

 IsMoveable(true);

 string [] lstrItems = new string [3];
 lstrItems[0] = "Item 1" ;
 lstrItems[1] = "Item 2" ;
 lstrItems[2] = "Item 3" ;

 TabControl lobjTab = CreateWindowTabControl("tabMain" , lstrItems, 350,
300, 40, 80, 40, 40, true);

 MainGrid.Children.Add(lobjTab);

}

According to the above source code, to run the application, it would show on the screen the
following "SwanCSharp" window:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 131

11.2 SwanCSharp_Controls.WindowError

The "WindowError" class allows us to display an error window with the format and style of the
"WindowBase" windows of this namespace "SwanCSharp". A source code example that
shows a "WindowError" window is as follows:

WindowError lobjError = new WindowError ("Error" , "Test of error message.");
lobjError.ShowDialog();
lobjError.Close();

When you run the above example source code are displayed the following window:

Optionally there exists a third parameter that allows us to choose the main colour of the
window, chosen from the six existing themes.

11.3 SwanCSharp_Controls.WindowInformation

The "WindowInformation" class allows us to display an information window with the format
and style of the "WindowBase" windows of this namespace "SwanCSharp". A source code
example that shows a "WindowInformation" window is as follows:

WindowInformation lobjInformation = new WindowInformation ("Information" ,
"Test of information message.");
lobjInformation.ShowDialog();
lobjInformation.Close();

When you run the above example source code are displayed the following window:

Optionally there exists a third parameter that allows us to choose the main colour of the
window, chosen from the six existing themes.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 132

11.4 SwanCSharp_Controls.WindowOKCancelQuestion

The "WindowOKCancelQuestion" class allows us to display a question window with the
format and style of the "WindowBase" windows of this namespace "SwanCSharp". A source
code example that shows a "WindowOKCancelQuestion" window is as follows:

WindowOKCancelQuestion lobjQuestion = new
WindowOKCancelQuestion ("Question" , "We will proceed with copying files." ,
SwanCSharp_Controls. InterfaceLanguage .English);
 lobjQuestion.ShowDialog();
if (lobjQuestion.WindowResponse == WindowResult .OK)
{
 /*
 **** The user has selected 'OK'
 */
}
else
{
 /*
 **** The user has selected 'Cancel'
 */
}
lobjQuestion.Close();

When you run the above example source code are displayed the following window:

Optionally there exists a fourth parameter that allows us to choose the main colour of the
window, chosen from the six existing themes.

11.5 SwanCSharp_Controls.WindowWarning

The "WindowWarning" class allows us to display a warning window with the format and style
of the "WindowBase" windows of this namespace "SwanCSharp". A source code example
that shows a "WindowWarning" window is as follows:

WindowWarning lobjWarning = new WindowWarning ("Warning" , "Test of warning
message.");
lobjWarning.ShowDialog();
lobjWarning.Close();

When you run the above example source code are displayed the following window:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 133

Optionally there exists a third parameter that allows us to choose the main colour of the
window, chosen from the six existing themes.

11.6 SwanCSharp_Controls.WindowYesNoQuestion

The "WindowYesNoQuestion" class allows us to display a question window with the format
and style of the "WindowBase" windows of this namespace "SwanCSharp". A source code
example that shows a "WindowYesNoQuestion" window is as follows:

WindowYesNoQuestion lobjQuestion = new WindowYesNoQuestion ("Question" , "Do
you like SwanCSharp?" , SwanCSharp_Controls. InterfaceLanguage .English);
lobjQuestion.ShowDialog();
if (lobjQuestion.WindowResponse == WindowResult .Yes)
{
 /*
 **** The user has selected 'Yes'
 */
}
else
{
 /*
 **** The user has selected 'No'
 */
}
lobjQuestion.Close();

When you run the above example source code are displayed the following window:

Optionally there exists a fourth parameter that allows us to choose the main colour of the
window, chosen from the six existing themes.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 134

11.7 WindowFile

This window will show in a tree structure all logical drives in the system and their associated
folders, and files, allowing you to select a specific file (open file dialog box), and returning the
full path selected. To call the file selection window write the following code:

WindowFile lobjFile = new WindowFile ("" , InterfaceLanguage .English);
lobjFile.Owner = this ;
lobjFile.ShowDialog();
string lstrFullFilename = lobjFile.FullFilename;
string lstrFile = lobjFile.Filename;
string lstrPath = lobjFile.Path;

lobjFile.Close();

The window can be displayed in Spanish and English. The first parameter of the constructor
we pass the desired mask (if left blank, it is assumed *. *) and the window return three
properties with all values of the selected file (full file name, file name without path, path
without file name). An example screen is:

Optionally there exists a third parameter that allows us to choose the main colour of the
window, chosen from the six existing themes.

11.8 WindowFolder

This window will show in a tree structure all logical drives in the system and their associated
folders, allowing you to select a folder or a particular unit and returning the full path selected.
To call the folder selection window write the following code:

WindowFolder lobjFolder = new WindowFolder (InterfaceLanguage .English);
lobjFolder.Owner = this ;
lobjFolder.ShowDialog();
string lstrPath = lobjFolder.SelectedFolder;

lobjFolder.Close();

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 135

The window can be displayed in Spanish and English, and according to the sample code in
the variable "lstrPath" receive the selected path in the window. An example screen is:

Optionally there exists a second parameter that allows us to choose the main colour of the
window, chosen from the six existing themes.

11.9 WindowNewFile

This window will show in a tree structure all logical drives in the system and their associated
folders, allowing build the "path" of a particular new file (dialog box to create files) and
returning the full path. To call the file selection window write the following code:

WindowNewFile lobjFile = new WindowNewFile ("swc" ,
InterfaceLanguage .English);
lobjFile.Owner = this ;
lobjFile.ShowDialog();
string lstrNewFile = lobjFile.File;

lobjFile.Close();

The window can be displayed in Spanish and English. The first parameter of the constructor
we pass the desired extension to the file name that the user enters on the screen (if you do
not want any extension, indicate "String.Empty") we obtain a property (File) which returns the
full path built using the selected path, the file name typed on the screen, and the selected
extension to open the window. An example screen is:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 136

Optionally there exists a third parameter that allows us to choose the main colour of the
window, chosen from the six existing themes.

11.10 WindowAddUser

This "Add User" window will allow us to add an option to register new users in
“UserManagement” object. An example of the window called "Add User" is:

private void mnuAddUser_Click(object sender, EventArgs e)
{
 WindowAddUser lobjAddUser = new WindowAddUser (ref gobjUserManage,
SwanCSharp_Controls. InterfaceLanguage .English);
 lobjAddUser.ShowDialog();
 lobjAddUser.Close();

}

As the first parameter is passed the “UserManagementSQLServer” object (may also be
Oracle, Firebird, MySQL, or Access), and the second parameter is passed the language of
the user interface. Optionally there exists a third parameter that allows us to choose the main
colour of the window, chosen from the six existing themes. An example screen is:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 137

This screen is never going to allow a user profile "StandarUser" create another user. A
profiled user "Administrator" only allows you to create another user "Administrator" or another
user "StandarUser". For "SuperAdmin" user no restrictions whatsoever.

11.11 WindowLoginUser

The logical thing would when running the application will display a window "login" to verify a
correct user entry. So before opening main window "Window1" we call the “Login” window.
Then the source code would look like this for developments with the window "WindowBase"
(is necessary to reference the SwanCSharp_Controls and SwanCSharp.Users namespaces):

public UserManagementSQLServer gobjUserManage = null ;

public Window1() : base (false)
{
 InitializeComponent();

 SetWindowTitle("Test of SwanCSharp" , Brushes .White);

 SetIconWindowTitle(Properties. Resources .SwanCSharp_Solo_Logo_Grande1);

 ShowCloseButton();
 ShowMaximizeButton();
 ShowMinimizeButton();

 IsMoveable(true);

 gobjUserManage = new UserManagementSQLServer ("COMPUTER-
NAME\\SQLEXPRESS", "Database");
 WindowLoginUser lobjLogin = new WindowLoginUser (ref gobjUserManage,
SwanCSharp_Controls. InterfaceLanguage .English);
 lobjLogin.ShowDialog();
 lobjLogin.Close();
 if (!gobjUserManage.LoggedIn)

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 138

 {
 WindowError lobjError = new WindowError ("Test" , "Login
incorrect.");
 lobjError.ShowDialog();
 lobjError.Close();
 Application .Current.Shutdown();
 }

}

The builder of this window has an overhead for each database managers supporting class
"UserManagement" (SQL Server, Oracle, Firebird, MySQL, and Access). Windows forms of
this class can be displayed in two languages through enumerated
UserManagement.InterfaceLanguage, Spanish and English. Optionally there exists a third
parameter that allows us to choose the main colour of the window, chosen from the six
existing themes.

The above code will display a login window, if the user is not correct, the application will
close. From the creation of the object "User Management" have a global variable
"gobjUserManage" available throughout the application that has properties with the values of
the user who accessed via login (UserName, UserPassword, UserCompleteName, Profile).

11.12 WindowPasswordUser

This window will allow us to change the password of the current user that is logged in at the
time. This method opens a window where you will enter the current password, and will enter
the new password. Pressing "OK" the password will be changed as long as the current
password entered matches.

To call the password change window write the following code:

WindowPasswordUser lobjPassword = new WindowPasswordUser (ref
gobjUserManage, SwanCSharp_Controls. InterfaceLanguage .English);
lobjPassword.ShowDialog();

lobjPassword.Close();

As the first parameter is passed the “UserManagementSQLServer” object (may also be
Oracle, Firebird, MySQL, or Access), and the second parameter is passed as the language

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 139

of the user interface. Optionally there exists a third parameter that allows us to choose the
main colour of the window, chosen from the six existing themes. An example screen is:

11.13 WindowRemoveUser

This window will allow us to remove users from the database. To remove a user only need to
enter his username. It is important to know that there are some rules to delete users: If the
current user is "SuperUser" can delete any other user whatever their profile, if the current
user's profile is "Administrator", can delete only "Standard User". The "Standard User" does
not have permission to delete any other user whatever their profile.

To invoke the user deleted window you write the following code:

WindowRemoveUser lobjRemove = new WindowRemoveUser (ref gobjUserManage,
SwanCSharp_Controls. InterfaceLanguage .English);
lobjRemove.ShowDialog();

lobjRemove.Close();

As the first parameter is passed the “UserManagementSQLServer” object (may also be
Oracle, Firebird, MySQL, or Access) created for the application, and the second parameter is
passed as the language of the user interface. Optionally there exists a third parameter that
allows us to choose the main colour of the window, chosen from the six existing themes. An
example screen is:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 140

11.14 WindowDataQuery

The "WindowDataQuery" class allows us to display a window with a "grid" of data and returns
a "DataRow" with the row that is selected in the window. A screen is as follows:

The "WindowDataQuery" class expects to receive four parameters which are: the DataTable
with the data, the desired title for the form to be displayed, the desired title for the "frame"
shown on the form, the size of the window (using the listed QueryWindowSize choosing from
Small, Medium, High), and the language of the form (using the listed InterfaceLanguage,
choosing between Spanish and English). Optionally there exists a fifth parameter that allows
us to choose the main colour of the window, chosen from the six existing themes.

After running the function displays a Windows form showing the data on screen. The user
can select a line by double-clicking on the row, or click on the row and clicking the "Select"
button. The function returns a "DataRow" with the data of the selected row.

At the head of the reference procedure be added to the class:

using SwanCSharp_Controls;

A sample line of code can be:

DataConnectionAccess lobjConnection = new
DataConnectionAccess ("Database.mdb" , "" , "" , DatabaseManager .Access);
DataTable ldatData = lobjConnection.SQLSelectExecute("SELECT * FROM
Staff");
lobjConnection.CloseConnection();

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 141

WindowDataQuery lobjData = new WindowDataQuery (ldatData, "Data Viewer" ,
QueryWindowSize .Small, SwanCSharp_Controls. InterfaceLanguage .English);
lobjData.ShowDialog();
DataRow ldarRow = lobjData.SelectedRow;
lobjData.Close();

11.15 WindowParameters

The "WindowParameters" will allow us to view and modify display all configuration
parameters associated with our developments (existing five constructors, one for each data
manager, SQL Server, Oracle, Firebird, MySQL, Access, and external file). The window can
be displayed in two ways, one way for the administrator where you can add, modify, and
delete all parameters (visible and invisible) which otherwise may query and modify only
visible parameters, can not in any case create a new or delete a configuration parameter.

To call the parameter changes window with all the permissions we can write the following
code:

gobjConfig = new ConfiguratorFile ("config.cfg");

WindowParameters lobjParameters = new WindowParameters (gobjConfig, false ,
true , InterfaceLanguage .English);
lobjParameters.ShowDialog();
lobjParameters.Close();

To call the parameter changes window to view and modify only the parameters "visible" we
can write the following code:

gobjConfig = new ConfiguratorFile ("config.cfg");

WindowParameters lobjParameters = new WindowParameters (gobjConfig, true ,
false , InterfaceLanguage .English);
lobjParameters.ShowDialog();

lobjParameters.Close();

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 142

Optionally there exists a fifth parameter that allows us to choose the main colour of the
window, chosen from the six existing themes.

11.16 WindowReportView

“WindowReportView” class allows us to show in a window any existing HTML report without
rebuilding it. It is necessary to report the following parameters:

* Filename. - The name of the file you will when stored on disk.
* File path. - The disk path of the file.
* Title window. - The title to be displayed in the window.
* Size of the display window. - You can choose between Small, Medium, and High.
* Interface language screen. - We choose the language in which to display the report output.

At the head of the reference procedure be added to the class:

using SwanCSharp_Controls;

A sample line of code can be:

WindowReportView lobjReport = new WindowReportView ("report.html" , "" ,
"Report View" , SwanCSharp.Reporting. ReportViewWindowSize .Small,
InterfaceLanguage .English);
lobjReport.ShowDialog();
lobjReport.Close();

The previous source code show the following window:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 143

Optionally there exists a sixth parameter that allows us to choose the main colour of the
window, chosen from the six existing themes.

11.17 WindowSplash

The "WindowSplash" class allows us to display a welcome screen (splash) when run our
application, or alternatively any window you want to display for a few seconds. The
"WindowSplash" window displays a main logo in the center of the window, a secondary logo
on any of the four corners, and horizontally centered text that can be adjusted vertically. The
window can be displayed in any of the six existing color themes. The parameters of the
window are:

* Text.- Text to display that will centered on the horizontal. If you do not want text we
reported with "empty".
* Margin top.- The vertical distance which you want to position the text.
* Width.- The width of the “Splash” window.
* Height.- The height of the “Splash” window.
* Main image.- Image to be displayed in the center of the "Splash" window.
* Secondary Image.- Secondary image to be displayed in the center of the window "Splash".
If you do not want, report with "null".
* Secondary image position.- Corner of the window "Splash" which will show the secondary
image.
* Time to close.- Time (in seconds) that the window will remain open "Splash", until its
closing.
* Transparency.- If desired or no transparency in the "Splash" window.
* Colour (Theme).- Main color of the "Splash" window.

At the head of the reference procedure be added to the class:

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 144

using SwanCSharp_Controls;

To create the "Splash" window, you use the commands:

WindowSplash lobjSplash = new WindowSplash ("Loading..." , 250, 600, 400,
Properties. Resources .Solariem, Properties. Resources .Powered_SwanCSharp,
PositionSecondaryImageSplash .BottomRightCorner, 6, true , WindowTheme.Blue);
lobjSplash.ShowDialog();

lobjSplash.Close();

To execute the welcome screen just before the start of the application, it is recommended to
place the source code in the constructor before the main window of our application. The
previous source code would show the following window:

11.18 SwanCSharp_Controls.ClipboardAgent

The ClipboardAgent class allows us to capture all that is cut or copied to the Windows
clipboard.

In the header of the referenced method be added the class:

using SwanCSharp_Controls;

To create the "ClipboardAgent" object does the following:

ClipboardAgent lobjClipAgent = new ClipboardAgent (this);

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 145

lobjClipAgent.ClipboardReceiveText += new
ClipboardAgent . ClipboardReceiveTextEventHandler (lobjClipAgent_ClipboardRece
iveText);

lobjClipAgent.ClipboardReceiveAudio += new
ClipboardAgent . ClipboardReceiveAudioEventHandler (lobjClipAgent_ClipboardRec
eiveAudio);

lobjClipAgent.ClipboardReceiveFiles += new
ClipboardAgent . ClipboardReceiveFilesEventHandler (lobjClipAgent_ClipboardRec
eiveFiles);

lobjClipAgent.ClipboardReceiveImage += new
ClipboardAgent . ClipboardReceiveImageEventHandler (lobjClipAgent_ClipboardRec
eiveImage);

Not only are we creating the object, but we are also creating an event for each type of data
that the clipboard is able to capture, in total four events, so you have to create subroutines
for each event:

private void lobjClipAgent_ClipboardReceiveImage(ClipboardAgent . ContentType
penuContentType, BitmapSource pobjImage)
{

}

private void lobjClipAgent_ClipboardReceiveFiles(ClipboardAgent . ContentType
penuContentType, System.Collections.Specialized. StringCollection pstrFiles)
{

}

private void lobjClipAgent_ClipboardReceiveAudio(ClipboardAgent . ContentType
penuContentType, Stream pobjAudio)
{

}

private void lobjClipAgent_ClipboardReceiveText(ClipboardAgent . ContentType
penuContentType, string pstrText)
{

}

In the desired part of our source code we started the agent:

lobjClipAgent.StartAgent();

When you close your application, or on that part of our software it is considered appropriate,
we should close the agent:

lobjClipAgent.CloseAgent();

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 146

11.19 SwanCSharp_Controls.GlobalHotKeys

The GlobalHotKeys class allows us to manage hotkeys globally (operating system). We can
assign to the operating system a keystroke and then run a process each time it was pressed.

In the header of the referenced method be added the class:

using SwanCSharp_Controls;

To create the "GlobalHotKeys" object does the following:

GlobalHotKeys mobjHotKey = new GlobalHotKeys (this);

mobjHotKey.HotKeyIsPressed += new
GlobalHotKeys . HotKeyPressedEventHandler (mobjHotKey_HotKeyIsPressed);

mobjHotKey.StartHotKey(Key.LeftAlt, 0x42);

We're not just creating the object, but we are also creating an event will be fired when the
keys are pressed. By "StartHotKey" method we started listening according the given
parameters. The first parameter we determine if we press auxiliary key (can be
Key.LeftAlt , Key.LeftCtrl , Key.RightCtrl , Key.LeftShift , Key.RightShift), and
the second parameter the ASCII hexadecimal value of the desired key. In our example we
passed "0x42" because the ASCII hexadecimal value 42 is the decimal value 66, which is the
letter "B" corresponds. So in the above example we are checking the keystrokes the
combination "Alt + B". If you do not wish to include an auxiliary key, we report the first
parameter with the value "0".

The last step is to create the method that will be called by the event class:

private void mobjHotKey_HotKeyIsPressed(Key pobjAuxKey, int pintKey)
{

}

When you close your application, or part of our software it is considered appropriate, we
must stop the HotKey object.

mobjHotKey.StopHotKey();

11.20 SwanCSharp_Controls.SW_Miscellaneous

The SW_Miscellaneous class cover those SwanCSharp.Miscellaneous generic functions that
need customization to be executed in a window SwanCSharp.WindowBase.

Functions library for .Net Framework 2.0/3.0 or higher.

http://www.swancsharp.com

http://www.swancsharp.com) Page: 147

11.20.1 LoadDataInComboBox

This procedure allows us to load in a ComboBox (generated from WindowBase class) all
desired items, inserting Text and Value parameters desired (something not directly allow the
ComboBox). You would create an array of string with the parameter "Text" for each item, and
another array of "String" with the parameter "Value" of each item. The third parameter is
passed by reference "ComboBox" we want to load.

In the header of the referenced method be added the class:

using SwanCSharp_Controls;

A sample line of code can be:

private void Form1_Load(object sender, EventArgs e)
{
 string [] lstrData = new string [3];
 string [] lstrValue = new string [3];

 lstrData[0] = "Option 1" ;
 lstrValue[0] = "1" ;

 lstrData[1] = "Option 2" ;
 lstrValue[1] = "2" ;

 lstrData[2] = "Option 3" ;
 lstrValue[2] = "3" ;

 ComboBox lobjComboBox = CreateWindowComboBox("cmbComboBox" , 150, 24, 100,
150, 0, 0, true);

 Miscellaneous .LoadDataInComboBox(lstrData, lstrValue, ref lobjComboBox);
}

