[@®) BoostSolutions

Condition User Guide

Contents

INEFOAUCTION ittt et e bbb 4
HOW tO USE CONAITION @AITON ..ottt ettt sttt 4
BASIC MO .ttt e 4
AQVANCEA MOTE .ottt e ettt 6
INSEIT COIUMINS oottt st s bbb bt 8
EXPIESSIONS ..ottt se et e e e e e e e 8
ADOUL N EXPIrESSION ..covvieeeeeiriiesites it sssessse sttt st st s st ss st 8
OPEIANGAS ettt sttt st ss s s s s s e eSS R RS R AR e 9
OPEIATOTS ..ottt sttt e s s e es e e s e et e ettt 9
NUMEIIC OPEIALOIS.....viuiiieieiiieietete ettt ettt ettt sttt et b s se e s bt esese e s besesesaesesesenens 9
Logic and BOOIEAN OPEIatorsS.......covuviieieiiiieccitieieieietee sttt ettt nan 10
OPEIAtiON PrECEUENCE ...ttt sttt st ssssss bbbt st s st et ss st 11
DAt LY PES ettt b e e bt 12
COIUMINS oottt et e e84 48kt 13
CONSTANT ..ttt sttt bbb bbb bbb 16
FUNCLIONS .ottt et e e skt 16
LOGIC FUNCHIONS ..ottt s bbbttt esb st snntn b 16

IF FUNCHION 1ottt 16
ISChaNGed FUNCHIONuoiiiieiiee ettt 17
IFEFTOI FUNCHION L.ttt 18
CONLAINS FUNCHION ..ottt ettt ettt 18
Data Type CONVErsiON FUNCHIONS ...t eeeeesseessseeesse st ss s st sssssssssssssesssnees 19
TODAEETIME. ...ttt ettt eeeine 19
TOPEOPIE <.ttt b et s ettt b sttt ne et besenenen 19
Date and TimMe FUNCLIONS ..ottt sssessss st sisse s i siseesesesssssesssssssesisens 20
AdADaYS FUNCHION. ...ttt ettt 20
AAHOUIS FUNCHION ...ttt 21
AdAMONTNS FUNCHION. ...ttt 21

DAY FUNCHION. ...ttt sttt ettt ettt eesene 22

DiffDAYS FUNCLION.ouitiiiieieiieiieieieieieie ettt sttt sttt s st sesesesesesnsesns 23

DiIffHOUIS FUNCHION. ...ttt 23
GEtDAte FUNCHION ...couiiiiiiicc ettt et 24
GEtTIME FUNCHION ...eiiiiieiet bbbttt 25
HOUT FUNCLION ..ttt bttt 25
WEEKAAY FUNCHION....c.iiieietiieete ettt ettt s s e et seannnenes 26
YA FUNCHION ..ttt 26
MONTN FUNCHION. ..ottt nens 27
TEXE FUNCLIONS ..ottt sese s ssssesssse e e s s ettt it 27
INAEXO ..t 27

SUDSEIING 1ottt ettt ettt s s s et st et e st e bbb b et et et et 28

Introduction
Condition is a powerful expression system which can realize many types of complicated
conditions.

The condition is an expression of returning Boolean value, true or false. The Boolean value will
decide if the function will take effect. This means that only when a condition returns as true,
then a predefined column or view permission is enabled. Otherwise, the product will not

function. Note, if an error occurs in the condition, then the returned value will be false.

How to use condition editor

The condition can be edited in Basic or Advanced modes.

Basic mode: launch the editor in basic mode, then simply use the drop-down menu or

elements.

Advanced mode: launch the editor in advanced mode and enter the expression manually. You

can create expression using the predefined variables and functions.
Expressions in basic mode can saved after being converted to advanced mode.

Basic mode

Open the condition editor, and set Condition Type as Basic, then you can add and edit

expressions using the predefined columns and operators.

Condition X
Condition Type:
And
D And)
_ Installation X
W or

+III'

Add condition

+

Add group

Clear Children

1_IIII'

0K Cancel

The elements available in Basic mode are shown below.

Condition Type Choose the condition mode, Basic or Advanced.

AND Performs a logical conjunction on two expressions.

OR Performs a logical disjunction on two Boolean expressions.
Add condition Add an expression in the editor.

Add group Add a group of expressions joined by AND or OR operator.
Clear Children Remove the expressions under one logic operator.

P Remove the expression.

To create an expression.

a. Click Add condition first.
b. Select one SharePoint column from the drop-down list.

And

Mone is equal to Input value x
Mame (Single line of text)
Title (Single line of text) ~

Enterprise Keywords (Lookup)

Category (fihoice)
Approval 5 g (Choice)

Author (Person or Group)
c. Select one predefined operator from the drop-down list.

And

[Category] is egual to Input value x
i equal to
i= not equal to @

d. Specify the input value.

[Cateqory] is equal to Installation x

Customized Value

Enter a value @

Current List

Name (Single line of text)

Title (Single line of text)

Category (Choice)

Department (Choice)

Document ID Value (Single line of text)
File Type (Single line of text)

Picture Size (Single line of text)
Content Type (Single line of text)

Copy Source (Single line of text)
Check In Comment (Single line of text)
Item Child Count (Single line of text)
Folder Child Count (Single line of text)

You can enter the value or select a SharePoint column.

e. To add more expressions, click the Add or Or operator, then add an expression based
on the above steps.

Advanced mode
To create an expression in Advanced mode, set the Condition Type as Advanced. Then you can

just select and insert the predefined functions, operators and constants from the drop-down
list, or enter the expression manually.

Condition

k4

Condition Type:

[Category]=="Instzll"s&[Department] !|="Test"s&& [Created] >=[Today]

(/)
@ x= fr x=

| oK || Cancel |

The auto-complete feature is provided when you insert a function, which helps you easily and
quickly add expressions.

di FE|

Lo i Mumber DiffDays(DateTime d1, DateTime d2)
g DiffHours U

Compares two dates and returns a number value
equal to the difference in days between the two
dates.

Ex: DiffDays([Modified], [Created]) will return a
number equal to the difference in days between
when an item was created and when it was last
modified. If, for instance, an item was created on
Aug 3 and last modified on Aug 4, this function will
return the value which is between 0 and 2.

Elements in the advanced mode.

il SharePoint column, includes all SharePoint columns in current list or library.
x= Constant
Jx Function
ey Operator

@ e 0 Indicate expression is valid.

0 Indicate expression is invalid.

Indicator which indicate if the expression is valid.

To add an expression.

a. Inthe editor area, enter an operand first, such as a column or constant.

Category (Choice)

Current List
Approver Comments
Name
Title
Enterprise Keywords

d e o0
Approval 5 =
Author
Department
Document ID Value
Document ID
Picture Width
Picture Height
Date Picture Taken
Comments

b. Then enter or select an operator.

is equal to (==

For predefined value types, the equality
aperator (==) returns True if the values
of its operands are equal, False otherwise.
For reference types other than string, the
equality operator (==) returns True if its
two operands refer to the same object.
For the string type, the equality operator
(==) compares the values of the strings.

iz equal to

is not equal to (1=

object/string iz a part of (I.. W
AND (&1

0 x- fe

—
¥

00 *x- & %=

Ok

Cancel

c. Enter an operand, such as a column or constant.

Condition

Condition Type:

[Category]=—="Instzall" & [Department] !=DepartmentlI | [Created Byl

@ x- & %=

‘ Ok H Cancel |

d. After expression finished, wait to see if the expression is validated.
An invalid expression cannot be saved successfully.

Insert Columns

You can insert a column in condition using the "Column" drop-down list. And you can also

enter the column name manually.
For the current list column, you can type the column name with brackets, such as [Title].
For the column from another list, the name must be separated by a dot, such as [(List).column].

In the list, columns may contain some special characters, and they will converted based on the

condition rules.

The following table is the conversion rules.

Special characters Convert to
\ \\

(\(

) \)

P X
Expressions

About an Expression

The condition is an expression which will return True or False.

And, an expression is composed of operands and operators.

Operands

An operand is an entity on which an operator acts. An operand can be any column name,

constant, value, or a sub-expression.

Operators

Operators that can be used in an expression are contained below.

Numeric Operators

The numeric operators only can be used in advanced mode.

Operators Description Apply to

+ plus Advanced mode
- minus Advanced mode
* Multiplied by Advanced mode
/ Devided by Advanced mode
% remainder Advanced mode

+ operator rules

Text Integer Number Boolean DateTime User
No No No No No
Integer No No No No
Number No No No No
Boolean No No No No No No
DateTime No No No No No No
User No No No No No No
- (binary), *, /, % operator rules
-/ Text Integer Number Boolean DateTime User
Text No No No No No No
Integer No No No No
Number No No No No
Boolean No No No No No No
DateTime No No No No No No
User No No No No No No

- (unary) operator rules

Text Integer Number Boolean DateTime User
%
No Yes Yes No No No

Logic and Boolean Operators

In this chapter, we will introduce Logic and Boolean operators included in the condition and

operation rules.

Operators Description Apply to

! Is not Advanced mode

< Is less than Advanced, Basic mode
<= Is less than or equal to Advanced, Basic mode
> Is greater than Advanced, Basic mode
>= Is greater than or equal to | Advanced, Basic mode
== Is equal to Advanced, Basic mode
I= Is not equal to Advanced, Basic mode
&& AND Advanced, Basic mode
I OR Advanced, Basic mode
IN Object/string is a part of Advanced, Basic mode
Begin with Basic condition

I operator rule

Text Integer Number Boolean DateTime User

No No No Yes No No

& & operator rule

&8, || Text Integer Number Boolean DateTime User
Text No No No No No No
Integer No No No No No No
Number No No No No No No
Boolean No No No Yes No No
DateTime No No No No No No

User No No No No No No

<, <=, >, >= operators rule

:'_ S s Text Integer Number Boolean DateTime User
Text No No No No No No
Integer No No No No
Number No No No No
Boolean No No No No No No
DateTime No No No No !I
User No No No No No No
==, |= operators rule

Text Integer Number Boolean DateTime User

No No No No

Integer No No No
Number No No No
Boolean No No
DateTime No No No
User No No No

Operation Precedence

Precedence rules determine the order in which operations are performed within expressions.

High precedence operations are performed before lower precedence operations.

This list indicates the precedence of operators from highest to lowest:

Priority Operator

1 0)

2 !

3 */ %

4 + -

5 < > <= >=
6 == |I=

7 &&

8 |

Data types

There are 6 data types within Conditions, and SharePoint columns and constants will be
mapped to them:

Text Data Type

Text Data Type allows the storage of characters, including spaces, punctuation marks and
symbols and is ideal for use in storing names and sentences. A Text value must be enclosed

with double quotes ("").
For example:

“Hello, world!”

Integer Data Type

Integer Data Type defines a number that does not require the storage of a decimal part. This
data type represents signed numbers with values ranging from negative 2147483647 through
positive 2147483647.

For example:
-204

248

Decimal Data Type
Decimal Data Type defines a number that can contain a decimal part.
For example:

248.123

Boolean Data Type

Boolean Data Type represents a Boolean value. It can only store TRUE or FALSE values.
For example:

True

False

DateTime Data Type

DateTime Data Type stores an instance of time expressed as a date and time of day. The
supported range of this data type is from 1900-01-01 00:00:00 to 8900-12-31 23:59:59.

For example:

2013-01-01 00:00:00

User Data Type
User Data Type represents a SharePoint user or group value.
For example:

Hans Zermo

Within Condition, only Decimal and Integer can be mutually converted automatically.

The decimal fraction of a value will be rounded down directly when converting Decimal to
Integer, while Integer will be converted to a float-point type directly when converting Integer

to Decimal.
The following functions can be used to convert data types:

ToDateTime

ToPeople

Columns

Columns represent SharePoint columns, which will be replaced by the actual values of the

column during expression calculation.

Each Column has a SharePoint type, such as a single line of text, a number, currency, etc., and
they map another type in expression. The following table displays the relationship between

SharePoint column type and condition data type.

Column type Data type Note
Choice Text
Single line of text Text
Multiple lines of text Text

If the number is shown as percentage, it will
Number Decimal be changed to its true value.
E.g., 10% will be 0.1.

Currency Decimal

Data and Time DateTime
Text, Decimal or
Lookup . It depends on the column type you look up.
DateTime
Yes/No Boolean
Person or Group User
Text, Decimal or
Calculated . It depends on the calculated column type.
DateTime
Hyperlink or Picture Text
External Data Text
Managed Metadata Text
ID Integer
Version Decimal
True represents there is an attachment in the
Attachment Boolean

item; otherwise, false.
Content Type Text The content type name.

Each workflow status is represented by a
corresponding number:
Not Started = 0
Failed On Start = 1
In Progress = 2
Error Occurred = 3

Workflow Status Integer Canceled = 4
Completed = 5
Failed On Start (Retrying) = 6
Error Occurred (Retrying) = 7
Canceled =15
Approved = 16
Rejected = 17
Each approval status is represented by a
corresponding number:
Approved=0

Approval Status Integer Rejected=1
Pending=2
Draft=3
Scheduled=4

Folder Child Count Integer

Item Child Count Integer

Approver Comments Text

Check Out To User
Check In Comments Text
Copy Source Text
File Size Text
Workflow Name N/A
Name Text
Recurrency Boolean
Post Text
Post by User
Picture Size Text
Picture Height Text
Picture Width Text
UDC Purpose Text
Connection Type Text

Following table indicates data types of SharePoint special columns.

Column type Data type
Full HTML content with formatting and constraints for publishing Text
Image with formatting and constraints for publishing Text
Hyperlink with formatting and constraints for publishing Text

And, each BoostSolutions column maps these data types.

Column type Return Data type Note

Cross-Site Lookup Text Same as SharePoint lookup column.
Cascaded Lookup Text Same as SharePoint lookup column.
Discussion Column Text

Choice indicator Text Same as SharePoint choice column.

Progress monitor Decimal Same as SharePoint number column.

You can insert the columns from the drop-down list provided in Condition Editor, or can type

the column name manually (For details, see Insert Columns).

Constant
In order for customization, Condition provides two more variables beyond SharePoint columns.
You can inset constants like SharePoint columns.

The constants can only be used in advanced mode, except the Today constant which can be
used in basic and advanced mode.

Constant
[Mow]
Constant Definition Data Type
Today The current date. DateTime
Now The current date and time. DateTime
Functions

Function: The supplement of operators, offering more rich functions.

The functions are categorized by their functionality.

e Logic functions
e Convert functions

e DateTime functions

e Text functions

Logic Functions
If Function

Checks the logical condition and return one value if true and another value if false.

Syntax

If (Boolean B, Type v1, Type v2)

Parameters

Type: Boolean

An expression, condition or Boolean value will return True or False.
vl
Type: Text, Integer, Decimal, Boolean, DateTime, User
The first value to return.
v2
Type: Text, Integer, Decimal, Boolean, DateTime, User
The second value to return.
Returns
Type: Text, Integer, Decimal, Boolean, DateTime, User

Returns v1 if the condition is met, otherwise, returns v2.

Example

If([Priority]=="(1) High", 5, 2) means that this function will return 5 if the priority is "(1) High",
otherwise it is 2.

IsChanged Function

Checks whether the value of a SharePoint column has been changed.

Syntax

IsChanged(Column c1)

Parameters

Column c1: A column from the current list.
Returns
Type: Boolean

Returns True if the column has been changed, otherwise, returns False if the column has not

been changed.

Example

IsChanged([Priority])&&[Status]!="Completed” means that a notification will be sent if the

priority column has been changed and the status is not equal to “Completed”.

IfError Function

Checks if the first parameter meet an error, and returns the corresponding value.

Syntax

IfError(Type, Type)

Parameters
Type (first)
Expression
Type (second)
Type: Text, Integer, Decimal, Boolean, DateTime, User
The value will be returned if expression occurs an error.
Returns
Type: Text, Integer, Decimal, Boolean, DateTime, User

Return the specified value if the expression evaluates to an error; otherwise, return the value of

the expression itself.

Example

If(ToDateTime("2011/12/19")>ToDateTime("Due Date"), False) will returns False, because the

expression met an error that text cannot be converted to a DateTime type.

Contains Function

Determines whether the second value is contained in the first value.

Syntax

Contains(Type, Type)

Parameters

Type: Text, User

The text or user used to be compare. The first parameter and second should be same type.
Returns

Type: Boolean

Returns True is the second parameter is contained in first one, otherwise, returns False.

Example

Contain([Attendees], ToPeople("SharePoint\Tom")). Suppose the [Attendees] contain an SP
group Product Team and a user Jerry and Tom is member of the Product Team. This function

will return True despite the Tom is not equal to Jerry or Product Team.

Contain(“SharePoint”, “Share”) will return True because the "Share" is contained in

"SharePoint".

Data Type Conversion Functions
ToDateTime

Converts the specified string representation of a date and time to an equivalent date and time

value.

Syntax

ToDateTime(Text s)

Parameters

Type: Text

A string to convert.
Returns
Type: DateTime

The date and time equivalent of the specified string.

Example

ToDateTime("9/8/2009") will returns the date Sept 8, 20009.

ToPeople

Converts Text to User.

Syntax

ToPeople(Text s)

Parameters

Type: Text

A string to convert.
Returns
Type: User

The user equivalent of the specified string.

Example

[Created By] == ToPeople("Tom") will check if the item was created by Tom. In this expression,

"Tom" is a string and [Created By] (in this case) must be a user or group.

Date and Time Functions
AddDays Function

Adds the specified number of days to one date and time.

Syntax

AddDays(DateTime d, Number n)

Parameters
d
Type: DateTime

A specified date and time.

n
Type: Integer
A number of whole days. The value can be negative or positive.
Returns

Type: DateTime

A new date and time that adds the specified number of days.

Example

AddDays([Today], 4) would add 4 days to the current date, meaning if today's date is Oct 14,

the function would return Oct 18.

AddHours Function

Adds the specified number of hours to a date and time.

Syntax

AddHours(DateTime d, Number n)

Parameters
d
Type: DateTime

A specified date and time.

n
Type: Integer
A number of whole hours. The value can be negative or positive.
Returns

Type: DateTime

A new date and time that adds the specified number of hours.

Example

AddHours([Now], 2) would return a time 2 hours after the current time. If the current time is

9:53 am, this function would return 11:53 am.

AddMonths Function

Adds the specified number of months to a date and time.

Syntax

AddMonths(DateTime d, Integer n)

Parameters

d

Type: DateTime

A specified date and time.

n
Type: Integer
A number of whole months. The value can be negative or positive.
Returns

Type: DateTime

A new date and time that adds the specified number of months.

Example

AddMonths([Modified], 2) would return a date 2 months after the modified date. If the

modified date is Oct 10, this function would return Dec 10.

Day Function

Returns an integer value between 1 and 31 that represents the day of the month.

Syntax

Day(DateTime d)

Parameters
d
Type: DateTime
A specified date and time.
Returns
Type: Integer

The number is given as an integer ranging from 1 to 31.

Example

Day([Today]) would return the number corresponding to today's date, meaning that if today is

July 4, 1996 the function would return the value 4.

DiffDays Function

Compares two dates and returns a number value equal to the difference in days between the

two dates.

Syntax

Day(DateTime d1, DateTime d2)

Parameters
dl

Type: DateTime

A specified date to compare.
d2

Type: DateTime

A specified date to compare.
Returns

Type: Integer

An integer equals to the difference in days between two dates.

Example

DiffDays([Modified], [Created]) would return the difference in days between when an item was

created and when it was last modified. If an item was created on Aug 3 and last modified on

Aug 4, this function would return 1.

DiffHours Function

Compares two time values and returns a number value equal to the difference in hours

between the two time values.

Syntax

Day(DateTime d1, DateTime d2)

Parameters
dl

Type: DateTime

A specified time to compare.
d2

Type: DateTime

A specified time to compare.
Returns
Type: Integer

An integer equals to the difference in hours between two times.

Example

DiffHours([Modified], [Created]) would return the difference in hours between when an item
was created and when it was last modified. If an item was created on Aug 3 at 8:00 am and last
modified on Aug 3 at 10:00 am, the result is 2.

GetDate Function

Retrieves the date from a date and time value.

Syntax

GetDate(DateTime d)

Parameters
d
Type: DateTime
A specified date and time.
Returns
Type: DateTime

The sequential serial number that represents a particular date.

Example

GetDate([Now]) would return today's date, if it is now Jan 1, 2006 11:00 am, this function will
return 1/1/2006.

GetTime Function

Retrieves the time from a date and time value.

Syntax

GetTime(DateTime d)

Parameters
d
Type: DateTime
A specified date and time.
Returns
Type: DateTime

A value indicating the time of datetime value.

Example

GetTime([Now]) would return the current time, if it is now Jan 1, 2006 11:00 am, this function

would return 0001-1-11 11 am.

Hour Function

Returns a number that represents the hour from a datetime value.

Syntax

Hour(DateTime d)

Parameters
d

Type: DateTime

A specified date and time.
Returns

Type: Integer

An integer that represents the hour from a datetime value, ranging from 0 (12:00 A.M.) to 23

(11:00 P.M.)

Example

Hour([Now]) means that if now is 2012/12/19 17:24:30, the function would return the value 17.

Weekday Function

Returns a number representing the day of the week.

Syntax

Weekday (DateTime d)

Parameters
d
Type: DateTime
A specified date and time.
Returns
Type: Integer

An integer represents the day of the week, ranging from 0 (Sunday) to 6 (Saturday).

Example

Weekday([Today]) would return the number corresponding to the current day of the week,

meaning that if today is Thursday, the function would return the value 4.

Year Function

Returns the year of datetime value.

Syntax

Year (DateTime d)

Parameters
d
Type: DateTime
A specified date and time.

Returns

Type: Integer
An integer represents the year of the datetime value, ranging from 1 to 9999.

Example

Year([Created]) would return the number of the created year, if created date is Oct 17, 2009,

the function will return 2009.

Month Function

Returns the month of a date represented by a serial number.

Syntax

Month (DateTime d)

Parameters
d
Type: DateTime
A specified date and time.
Returns
Type: Integer

An integer represents the month of the datetime value, ranging from 1 (January) to 12

(December).

Example

Month([Created]) would return the number corresponding of the created month, meaning that
if created date is Oct 17, 2009, the function would return the value 10.

Text Functions
IndexOf

Searches for the specified text and returns the zero-based index of it if it exists.

Syntax

IndexOf (Text s1, Text s2)

Parameters

sl
Type: Text

From which to search.

s2

Type: Text

The string to seek.
Returns
Type: Integer

Returns the zero-based position in text where search text can be found. Returns -1 if search is

not found or if search is empty.

Example

"oy

IndexOf(“First name”, “i") will return 1.

SubString

Returns a sub-string of t beginning at start zero-based position and with length characters.

Syntax

Substring (Text s, Integer start, Integer count)

Parameters

Type: Text

From which to search.
start

Type: Integer

The index of the start of the substring.

count

Type: Integer

The number of characters in the substring, it is optional.
Returns
Type: Text

A string equivalent to the substring of length count that begins at start in the text, or Empty if

start is equal to the length of this text and length is zero.

Example

Substring(SharePoint, 5, IndexOf("First name”, “s")) will return ePo.

